Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rettyの分析基盤におけるAWS活用術
Search
chie8842
October 20, 2017
Technology
8
1.9k
Rettyの分析基盤におけるAWS活用術
#xtechjaws #xtechjaws01
2017/10/20 X-Tech JAWS の資料
chie8842
October 20, 2017
Tweet
Share
More Decks by chie8842
See All by chie8842
MongoDB Atlas Search のご紹介
chie8842
2
1.3k
MongoDB Atlas Vectorsearchではじめる生成AIアプリ開発
chie8842
3
1.4k
AWS GlueとAWS Lake Formationではじめるデータマネジメント
chie8842
0
940
Distributed Processing in Python
chie8842
2
640
クックパッドにおける推薦(と検索)の取り組み
chie8842
21
7.9k
Understanding distributed processing in Python
chie8842
2
1.9k
Performance Tuning Tips of TensorFlow Inference
chie8842
1
720
クックパッドにおけるCloud AutoML事例
chie8842
9
7.8k
Cookpad_Internship_MLOps_Lecture_2018
chie8842
35
16k
Other Decks in Technology
See All in Technology
Lexical Analysis
shigashiyama
1
150
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
AWS Lambdaと歩んだ“サーバーレス”と今後 #lambda_10years
yoshidashingo
1
170
SSMRunbook作成の勘所_20241120
koichiotomo
2
120
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
0
110
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
350
Security-JAWS【第35回】勉強会クラウドにおけるマルウェアやコンテンツ改ざんへの対策
4su_para
0
170
Lambdaと地方とコミュニティ
miu_crescent
2
370
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
サイバーセキュリティと認知バイアス:対策の隙を埋める心理学的アプローチ
shumei_ito
0
380
100 名超が参加した日経グループ横断の競技型 AWS 学習イベント「Nikkei Group AWS GameDay」の紹介/mediajaws202411
nikkei_engineer_recruiting
1
170
[FOSS4G 2024 Japan LT] LLMを使ってGISデータ解析を自動化したい!
nssv
1
210
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
4 Signs Your Business is Dying
shpigford
180
21k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Unsuck your backbone
ammeep
668
57k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
A Philosophy of Restraint
colly
203
16k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Transcript
3FUUZͷੳج൫ʹ͓͚Δ"84׆༻ज़ !DIJF DIJFIBZBTIJEB 1
ࣗݾհ $IJF)BZBTIJEB 5XJUUFS!DIJF (JU)VCDIJF 3FUUZ*OD 4PGUXBSF&OHJOFFS
"84($1ػցֶश1ZUIPO4DBMB$MPKVSF%#WJN মϐΞϊςχεεϊϘ 2
"84 ͱҰ෦($1 Λϑϧ׆༻ͯ͠ ੳج൫ΛظؒͰ ߏஙͨ͠ࣄྫΛհ͠·͢ɻ 3
3FUUZͷσʔλ • ͓ళใ • Ϣʔβใ • ྉཧ໊ใ • ͓ళ৯ͷࣸਅ •
Ϣʔβͷߘจ • ϖʔδͷΞΫηεϩά 4
ੳج൫ߏஙͷഎܠ • 3FUUZೖࣾ マネージャ わたし(⼊社初⽇、 肩書き:データ サイエンティスト) ͱΓ͋͑ͣɺੳج൫ͭͬͯ͘ɻ ϲ݄Ͱʂ ͑ɺੳج൫ʜʁ
5
ͦͦੳج൫ͱʁ • σʔλΛੵɾ׆༻͢ΔͨΊͷج൫ ੳج൫ ! ,1*μογϡϘʔυ ΞυςΫ Ϩίϝϯυ ϩά ϑΝΠϧ
σʔλ ϕʔε 6 " # "#ςετ
ͱͱ͋ͬͨੳج൫ͷ՝ᶃ ˙%8)ͷςʔϒϧઃܭͷ ྫ ΫΤϦ࣮ߦ࣌ʹաେͳαʔό Ϧιʔε͕ඞཁ ετϨʔδ༰ྔඡഭ ੳͮ͠Β͍ ʢΞυϗοΫੳͷʹ ෳࡶͳਖ਼نදݱநग़ʣ •
ෆཁͳϩά͕ϩάશମͷׂ • దͳσʔλܕ͕ΘΕ͍ͯͳ͍ • KTPOΦϒδΣΫτ͕ςΩετܗࣜͰೖ͍ͬͯΔ 7
ͱͱ͋ͬͨੳج൫ͷ՝ᶄ ˙Ϛελσʔλผͷ%#ʹ͋Δ • Ϛελσʔλͱಥ߹ͯ͠ੳ͍ͨ͠߹ ผͷڥʹσʔλΛҠ͢ඞཁ͕͋Δ • KPJO͍ͨ͠ΧϥϜಉ࢜Ͱσʔλܕ͕ҟͳΔ ੳऀ͝ͱʹڥߏங σʔλసૹίετ
8
ͱͱ͋ͬͨੳج൫ͷ՝ᶅ ˙ϩά૿େʹ͏ύϑΥʔϚϯεϘτϧωοΫ • ࣍όον͕ऴΘΒͳ͍ • ؾܰʹΞυϗοΫੳͰ͖ͳ͍ ˠΫΤϦΛ͛Δࡍ4MBDLʹใࠂ͢Δӡ༻ 9
ݱঢ়ཧ • ϩάαΠζɿʹे(#ʢH[KTPOঢ়ଶʣ ˠ͚ͬ͜͏Ͱ͔͍ɻ͜Ε͔Β૿͑Δ • ਖ਼نԽ͞Ε͍ͯͳ͍ϩά – ୯७ͳσʔλసૹਖ਼نදݱநग़Ͱ͢·ͳ͍ – 4FTTJPOJ[F&5-ͰΔ
• αʔϏεଆͷػೳՃʹ͏ཁ݅มߋ͕ ༧͞ΕΔ 10
৽͍͠ੳج൫ʹٻΊΒΕΔͷ • ੳऀʹͱ͍͍ͬͯ͢ – 42-ͦΕʹ४ͣΔΫΤϦݴޠ͕ར༻Ͱ͖Δ – Ϩεϙϯεεϧʔϓοτ • Ճ։ൃɾӡ༻͕͍͢͠ –
ྻมߋ͕ॊೈʹͰ͖Δ – ෳࡶͳ&5-ॲཧʹॊೈʹରԠͰ͖Δ • ίετʢΠχγϟϧϥϯχϯάʣ͕ݱ࣮తͰ͋Δ • εέʔϥϒϧͰ͋Δ – ੳରσʔλͷछྨαΠζ͕૿͑ͯରԠͰ͖Δ Ϋϥυͷྑ͞Λϑϧ׆༻ͨ͠ੳج൫ 11
ͭͬͨ͘ੳج൫ 3FUUZαʔϏεج൫ 3FUUZੳج൫ʢ"84ʣ 3FUUZੳج൫ʢ($1ʣ Kinesis S3 EMR (Spark) S3 EC2
EC2 RDS(MySQL) 分析者 プランナ 12
ͭͬͨ͘ੳج൫ 3FUUZαʔϏεج൫ 3FUUZੳج൫ʢ"84ʣ 3FUUZੳج൫ʢ($1ʣ Kinesis S3 EMR (Spark) S3 EC2
EC2 RDS(MySQL) 分析者 プランナ σʔλϨΠΫ σʔλՃ πʔϧ %8)ɾ%. 13
ੳج൫ߏஙͷϙΠϯτ ظؒͰΘΕΔੳج൫Λߏங͢ΔͨΊʹؾΛ͚ͭͨ ϙΠϯτΛ͝հ͠·͢ɻ 14 ̍ɽతʹ͋ͬͨج൫ίϯϙʔωϯτͷ બఆ ̎ɽॲཧ͢Δσʔλྔͷ૿ՃΛߟྀͨ͠
ઃܭ ̏ɽϫʔΫϑϩʔͷཧ ̐ɽظؒͰ͑͘Δੳج൫Λ࡞Δ ߏஙͷਐΊํ
తʹ͋ͬͨج൫ίϯϙʔωϯτ ͷબఆ 15
ੳج൫ͷׂ 16 σʔλϨΠΫ %8) σʔλͷऩूɾ ੵॴ %. ΞυϗοΫੳ ༻σʔλϕʔε తผʹՃɾू
͞Εͨσʔλϕʔε Γ͍ͨ͜ͱ͕ҧ͏ͷͰඞཁͳཁ݅ҧ͏ɻ ҰՕॴͰҰʹΖ͏ͱ͠ͳ͍ɻ ͦΕͧΕͷཁ݅ʹ͋ͬͨίϯϙʔωοτΛར༻ ॲཧΛ͚Δ
3FUUZͰͷߏ 17 σʔλϨΠΫ 4 %8)%. #JH2VFSZ
σʔλϨΠΫɿ4 • ඇߏԽσʔλͷอଘ • ֦ுੑɾٱੑ͕୲อ͞ΕΔ • αʔϏεͷಈ͍͍ͯΔॴͱಉ͡ϦʔδϣϯʹσʔλΛ อ͍࣋ͨ͠ ߹ʹΑͬͯόοΫΞοϓɺࠪϩάɺকདྷతͳ σʔλϏδωεͷཁ݅ߟྀ
– ωοτϫʔΫసૹίετ – ཧ͢͠͞ • ಉ͡όέοτͰϓϨϑΟοΫελάΛར༻ͨ͠ॊ ೈͳϥΠϑαΠΫϧͷӡ༻ • ,JOFTJT'JSFIPTFΛར༻͢Δ͜ͱͰ͔ΜͨΜʹ࣌͝ͱʹ σΟϨΫτϦΛ͚ͯอଘͰ͖Δ 18
%8)ɾ%.ɿ#JH2VFSZ • ੳऀʹͱ͍͍ͬͯ͢ – 4UBOEBSE42-͕ར༻Ͱ͖Δ – 6%'8JOEPXؔ͑Δ – εϓϨουγʔτQBOEBTEBUBGSBNFͱͷ࿈ܞ •
ޙͷςʔϒϧઃܭมߋ͕͍͢͠ – ςʔϒϧͷྻՃ͕Ͱ͖Δ • ҆ఆͨ͠ϨΠςϯγͱεϧʔϓοτ • ϝϯςφϯεϑϦʔ • ࣌ؒ՝ۚͰͳ͘ΫΤϦ՝ۚ • σϝϦοτɿ3FE4IJGU"UIFOBΛ͏߹ͱൺͯɺ "84͔Β($1ͷσʔλసૹίετ͕͔͔Δ 19
ॲཧ͢Δσʔλྔͷ૿ՃΛ ߟྀͨ͠ઃܭ 20
αʔϏε֦େʹ͏σʔλྔ૿Ճ • 3FUUZͷ߹ 21 ݄ສ66 ݄ສ66
Ͱഒɻࠓޙ૿͑ଓ͚Δɻ ࠷ॳ͔Βεέʔϥϒϧͳઃܭʹ͓ͯ͘͠ ඞཁ͕͋Δɻ
σʔλྔ૿ՃͰؾʹ͖͢ϙΠϯτ • σʔλੵ༰ྔ – 4ɺ#JH2VFSZΛ࠾༻͢Δ͜ͱͰΫϦΞ • &5-ॲཧ – σʔλ͕૿͑ͯಉ͡ΞʔΩςΫνϟͰॲཧՄೳ͔ –
ॲཧ͕࣌ؒݱ࣮త͔ • σʔλసૹ – σʔλ͕૿͑ͯಉ͡ΞʔΩςΫνϟͰॲཧՄೳ͔ – ॲཧ͕࣌ؒݱ࣮త͔ – సૹίετ͕ڐ༰ൣғ͔ 22
&5-͔&-5͔ʁ &5-ɿ&YUSBDUˠ5SBOTGPSNˠ-PBE – σʔλΛܗ͔ͯ͠Β%8)ʹϩʔυ͢Δ &-5ɿ&YUSBDUˠ-PBEˠ5SBOTGPSN – σʔλΛ%8)ʹϩʔυ͔ͯ͠Β%8)্ͰσʔλΛܗ͢Δ 23 • 3FUUZͷ߹
– ෆཁͳϩάग़ྗ͕શମͷׂΛΊΔͨΊɺωοτϫʔΫ సૹྔΛߟྀͯ͠%8)ʹೖΕΔલʹϑΟϧλ͍ͨ͠ – 42-Ͱදݱͮ͠Β͍ෳࡶͳ&5-ॲཧΛߦ͍͍ͨ ˠ%8)ʹೖΕΔલʹσʔλܗɻ ʢͨͩ͠42-ͰॲཧͰ͖Δͷ#JH2VFSZ্Ͱॲཧʣ
&5-ॲཧɿ&.3 ˙&.3 • ϩά͕૿େͯ͠ΫϥελΛ૿͢͜ͱͰ εέʔϧͰ͖Δ • Ϋϥελڥߏங͕ෆཁ • (BOHMJB;FQQFMJOʹΑΔϦιʔεࢹϊʔτ ϒοΫ։ൃ͕ศར
• ౦ژϦʔδϣϯͰ͑Δ σʔλՃᶃʢ4QBSLʣ 24 σʔλՃ ᶄʢ42-ʣ
&5-ॲཧɿ&.3 4QBSL ˙4QBSL • 42-Ͱදݱͮ͠Β͍ඇߏԽσʔλʹର͢Δ ෳࡶͳ&5-ॲཧ – ࣌ܥྻσʔλͷ4FTTJPOJ[FͳͲ • ੳऀʹೃછΈਂ͍1ZUIPOͰॲཧ͕هड़Ͱ͖Δ
• 42-ͱҟͳΓϞδϡʔϧʹ͚ͯςετ͕Ͱ͖Δ ˞4QBSLͷৄࡉ1Z$PO+1ͷൃදࢿྉࢀর σʔλՃᶃʢ4QBSLʣ 25 σʔλՃ ᶄʢ42-ʣ
σʔλྔ૿ՃͰؾʹ͖͢ϙΠϯτ • σʔλੵ༰ྔ – 4ɺ#JH2VFSZΛ࠾༻͢Δ͜ͱͰΫϦΞ • &5-ॲཧ – σʔλ͕૿͑ͯಉ͡ΞʔΩςΫνϟͰॲཧՄೳ͔ –
ॲཧ͕࣌ؒݱ࣮త͔ • σʔλసૹ – σʔλ͕૿͑ͯಉ͡ΞʔΩςΫνϟͰॲཧՄೳ͔ – ॲཧ͕࣌ؒݱ࣮త͔ – సૹίετ͕ڐ༰ൣғ͔ 26
σʔλసૹɿ&NCVML • ZBNMϑΝΠϧͰσʔλసૹͷઃఆΛཧ • ϓϥάΠϯʹΑ༷ͬͯʑͳσʔλιʔεؒͷ σʔλసૹ͕Մೳ • &NCVML্Ͱ͋ΔఔͷσʔλͷՃՄೳ • σʔλͷฒྻΛ্͛Δ͜ͱͰσʔλసૹޮ
Λ্Ͱ͖Δ – ͨͩ͠సૹσʔλྔ͕ଟ͍ͷʹؔͯ͠Τϥʔ͕ සൃ͍ͯ͠Ζ͍Ζνϡʔχϯά͕ඞཁͩͬͨɻ 27
ϫʔΫϑϩʔͷཧ 28
ϫʔΫϑϩʔͷಋೖ &NCVMLɺ&.3ɺ1ZUIPOͳͲ߹ΘͤΔͱΛ͑ΔλεΫ ˠґଘؔͷ֬ೝΤϥʔ࣌ͷղੳͷͨΊͷϫʔΫϑϩʔ ΤϯδϯΛಋೖɻ ϫʔΫϑϩʔΤϯδϯʹҎԼͳͲ͕͋Δ • NBLFpMF • EJHEBH
• "JSqPX • -VJHJ ࠓճɺ7JTVBMJ[BUJPOͱ1ZUIPOͰ͔͚Δͱ͍͏؍͔Β "JSqPXΛબΜͩ 29
"JSqPXͷར༻ • 1ZUIPOͰ͔͚Δ • 7JTVBMJ[BUJPO͕༏Ε͍ͯΔ – ॲཧͷґଘ͕ؔΘ͔Γ͍͢ – ຖɺλεΫ͝ͱͷॲཧ͕࣌ؒݟ͑Δ ˞HJUIVCͷ"JSqPXͷϖʔδʹྫ͕͋ͬͯΘ͔Γ͍͢
• Τϥʔ࣌ͷϦτϥΠͷ੍ޚ • ॲཧ݁ՌΛ4MBDLͰ௨ 30
ظؒͰ͑͘Δੳ ج൫Λ࡞ΔߏஙͷਐΊํ 31
ੳج൫͋Δ͋Δ • ࡞ͬͯΈ͚ͨͲΘΕͳ͍ – ཁ݅ͱ߹Θͳ͍ – εέʔϧͰ͖ͣ࡞Γ͠ – ͳΜ͔͍ʹ͍͘ •
ӡ༻͕ΊΜͲ͍͘͞ • ਵ࣌ͷཁ݅มߋʹ͑ΒΕͳ͍ 32 ҰਓͰ๊͑ࠐΉͱ͍ͨΜͳ͜ͱʹɻ
ੳج൫ߏஙͷਐΊํᶃ • ૣ͘࡞ͬͯ͑͘ͳ͍ͷΛ࡞ͬͯҙຯ͕ͳ͍ • %8)ͷ߹ɺج൫෦ʮ࡞ͬͯյͯ͠ʯ͕؆୯ʹ ͢·ͳ͍ɻ • ج൫෦৻ॏʹܾΊͨ 5⽉ 6⽉
ཁ݅ώΞϦϯάɺɾٕज़બఆɺ1P$ &5-εΫϦϓτ࡞ɾ ڥߏங ͬͪ͜ʹ͔͚࣌ؒͨɻ ͪΌΜͱΘΕΔੳج൫͕Ͱ͖ͨʂ 33
ੳج൫ߏஙͷਐΊํᶄ • ੳऀ͕ࣗ͋Δఔӡ༻Ͱ͖ΔΑ͏ʹ͢Δ – ϑϧϚωʔδυαʔϏεΛ͏ – &NCVMLͷઃఆϑΝΠϧੳऀ͕ࣗͰՃɻ Ճ͞ΕͨΒࣗಈͰ"JSqPXδϣϒʹऔΓࠐ·ΕΔ Α͏ʹ͢Δ –
4QBSLʹΑΔਖ਼نදݱநग़ͷ݅มߋɺઃఆ༻ͷ ςΩετϑΝΠϧͷରߦΛมߋ͢Δ͚ͩ – Τϥʔൃੜ࣌#BDLMPHͰϨϙʔτͯ͠*TTVFཧɻ ؆୯ͳΤϥʔؾ͍ͮͨਓ͕͢ɻ 34
ظؒͰ࡞ΔͨΊʹޙճ͠ʹͨ͠ͷ ҎԼʹؔͯ͠ɺ࠷ॳͷϲ݄༏ઌΛԼ͛ͨɻ • $*ɾςετͷ࣮ • υΩϡϝϯςʔγϣϯ ͱʹ͔͘ಈ͘ͷΛݟͤΔ͜ͱ༏ઌɻ ʢ্هΛ୲อͯ͠ΘΕͳ͔ͬͨΒҙຯ͕ͳ͍ͷͰɺҰ ୴ӡ༻ʹͤͯΈ͔ͯΒͪΌΜͱ͢Δํʹͨ͠ɻʣ
όά͕͋Δ߹͋ͱ͔Βͳ͓ͤΔͭ͘Γʹͳ͍ͬͯΕ Α͍ 35
ੳͷͨΊʹʢۤ࿑ʣͨ͜͠ͱ ͷҰ෦ • ,JOFTJT'JSFIPTFʮσʔλൃੜ࣌ࠁʯͰͳ͘ʮσʔλ౸ ண࣌ࠁʯͰσΟϨΫτϦ͕͔ΕΔɻ લͷσʔλΛੳ͠Α͏ͱ͢Δͱɺσʔλ͕Γͳ ͍͜ͱʹͳΔ ˠ&.3Ͱͷ&5-Ͱʮσʔλൃੜ࣌ࠁʯΛ͏Α͏ʹɻ •
#JH2VFSZEBUFϑΥʔϚοτ(.5ͷΈɻ ɹˠ&5-Ͱ࣌ؒޙͷ࣌ࠁͷΧϥϜ࡞ • σʔλϕʔε͔Βऔಘ͢ΔςʔϒϧͱϩάςʔϒϧͷΧ ϥϜͷܕΛ͋ΘͤΔ • (PPHMF"OBMZUJDTʹ͋Θͤͯ66*%ͱ4FTTJPO*%Λ&5-Ͱ ༩ 36
͍͞͝ʹ • "84ʢͱ($1ʣΛϑϧ׆༻͢Δͱੳج൫ΛظؒͰ ࡞ΕΔʂ – Ͱ̍ਓͰΔͷͭΒ͔ͬͨɻ৭ΜͳҙຯͰɻ • ੳج൫ͷߏஙͷϙΠϯτͱͯ͠ɺҎԼΛհͨ͠ɻ – తʹ͋ͬͨج൫ίϯϙʔωϯτͷબఆ
– ॲཧ͢Δσʔλྔͷ૿ՃΛߟྀͨ͠ઃܭ – ϫʔΫϑϩʔͷཧ – ظؒͰ͑͘Δੳج൫Λ࡞ΔߏஙͷਐΊํ 37
༻ޠ • σʔλϨΠΫ – ՃલͷੜϩάΛอଘ͢Δॴ • %8) – ੳ͍͢͠Α͏ʹՃ͞ΕͨσʔλΛ֨ೲ͢Δσʔλϕʔε •
%. – ੳ༻్ʹԠͯ͡ूܭޙͷσʔλͳͲΛ֨ೲ͢ΔͳͲɺαϯυ ϘοΫεతʹ͔ͭ͏ͨΊͷσʔλϕʔε • σʔλՃπʔϧ – ϩάΛੳ͍͢͠ܗʹܗ͢Δπʔϧ • ϫʔΫϑϩʔΤϯδϯ – Ұ࿈ͷσʔλॲཧͷϑϩʔΛཧ͢Δπʔϧ 38