Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ソーシャルゲームの膨⼤なゲームログを扱うCygamesの Amazon Redshift 活用事例

Cygames
August 06, 2020

ソーシャルゲームの膨⼤なゲームログを扱うCygamesの Amazon Redshift 活用事例

2020/08/06 Amazon Redshift事例祭り(活用編)

Cygames

August 06, 2020
Tweet

More Decks by Cygames

Other Decks in Technology

Transcript

  1. アジェンダ • Cygamesについて • 弊社の運⽤している分析基盤について • DataLakeExportを活⽤してみた – DataLakeExportの概要 –

    活⽤事例 • RA3タイプのインスタンスに移⾏してみた – RA3の概要 – 移⾏時に注意したこと – 移⾏した結果 3/32
  2. アジェンダ • ⾃⼰紹介 • Cygamesについて • 弊社の運⽤している分析基盤について • DataLakeExportを活⽤してみた –

    DataLakeExportの概要 – 活⽤事例 • RA3タイプのインスタンスに移⾏してみた – RA3の概要 – 移⾏時に注意したこと – 移⾏した結果 5/32
  3. Cygamesの分析基盤について • Amazon Redshiftを採⽤する前はNetezza1をDWHとして利⽤ – ゲームDBから直接Netezzaにロードする構成 – DataLakeなどはなし︕ – 容量削減などでNetezzaから過去のデータを消すと復元も⼤変だった…

    • タイトル毎に徐々にRedshiftへ移⾏していき、 2018年4⽉頃にRedshiftへ完全に移⾏完了︕ – 主にds2.xlargeでタイトル毎に2~16nodesで15クラスターで運⽤ – ⼤体1ゲーム1クラスター + 内製BIツール⽤などのクラスター 6/32 1. IBM PureData System for Analytics
  4. Cygamesの分析基盤について 7/32 DataSource ゲームDB (MySQL) EC2上の アクセスログ DataLake S3 Redshift

    分析業務 内製BIツール 不具合調査 DWH 毎⽇のログデータ やdumpデータ
  5. Cygamesの分析基盤について • S3にあるデータがSpectrum利⽤しづらい形だった – CSV形式で取得していたのであまり参照効率がよくない… – path/ テーブル名 / ⽇付

    ではなく、 path / ⽇付 / テーブル名 の構造だったので扱いづらい データ規模も⼤きく運⽤期間も⻑いため、⼀括で構造変えるのも少し怖い… • なので、Spectrumで扱いたいテーブルは元データは残したまま、 前処理としてEC2上でバッチ処理させてSpectrumで扱いやすい形式で 再配置することにした 11/32
  6. S3 Redshift Spectrum⽤ 中間データ Redshift Spectrum 変換 ゲームDB (MySQL) EC2上の

    アクセスログ 毎⽇のログデータ やdumpデータ Cygamesの分析基盤について 13/32 DataSource DataLake 分析業務 内製BIツール 不具合調査 DWH
  7. アジェンダ • ⾃⼰紹介 • Cygamesについて • 弊社の運⽤している分析基盤について • DataLakeExportを活⽤してみた –

    DataLakeExportの概要 – 活⽤事例 • RA3タイプのインスタンスに移⾏してみた – RA3の概要 – 移⾏時に注意したこと – 移⾏した結果 14/32
  8. DataLakeExport導⼊版 18/32 DataSource DataLake S3 Redshift 分析業務 内製BIツール 不具合調査 DWH

    Spectrum⽤ 中間データ Redshift Spectrum ゲームDB (MySQL) EC2上の アクセスログ 毎⽇のログデータ やdumpデータ
  9. DataLakeExportを活⽤してみた • Spectrum⽤データ作成完了までが圧倒的に早くなった! – Redshiftのリソース使えるし当然だけど… 19/32 0 100 200 300

    400 500 tableD tableC tableB tableA 変更後 変更前 (単位 : 分) (1⽇分のデータの COPYにかかる時間含む)
  10. DataLakeExportを活⽤してみた(まとめ) 21/32 • Redshiftのインスタンスタイプ拡張を検討する前に、 Spectrum利⽤でどうにかできないか考えてみる – これから分析基盤を構築する場合は、Spectrum利⽤がいつでもできるような DataLake設計にしておくことを強くお勧めします… • SQLで表現できるような前処理が存在する場合はUNLOADクエリで

    代替できないか考えてみる – EC2で処理しているならRedshiftがビジーな時間帯でなければ処理時間は 早くなるケースが多そう – AWS Glueで処理している場合もRedshiftインスタンスが既にあるなら Glueの分の費⽤が抑えられそう
  11. アジェンダ • ⾃⼰紹介 • Cygamesについて • 弊社の運⽤している分析基盤について • DataLakeExportを活⽤してみた –

    DataLakeExportの概要 – 活⽤事例 • RA3タイプのインスタンスに移⾏してみた – RA3の概要 – 移⾏時に注意したこと – 移⾏した結果 22/32
  12. RA3移⾏時に注意したこと 24/32 • RA3に移⾏しても普段の業務に⽀障が出ないかを検証する ⽉額のコストは維持したいので、既存の構成と同じ費⽤になるような 構成をRA3で考える • 現⾏のクラスタからスナップショットを取得してリストアして 検証⽤クラスタを作成して以下を検証する –

    分析担当者に普段業務で扱うようなクエリをテスト的に投げてもらって、 処理速度が遅くなってないか – 毎⽇のS3からのロード処理が遅くなってないか • タイトル毎に構成も変わるので個別に検証していく
  13. RA3移⾏時に注意したこと 25/32 あるタイトルAの場合 • 現⾏ : ds2.xlarge * 8nodes 移⾏後

    : ra3.4xlarge * 2nodes に移⾏するパターン • コスト – 約13%ほどRA3の⽅が安くなる (マネージドストレージの費⽤込) • 分析に使うクエリの処理時間 – 全体的に早くなった︕ が、物によっては遅くなった︖ • ロード処理にかかる時間 – かなり遅くなった… – おそらくnode数が減ったことで並列実⾏数が減ったのが原因︖
  14. RA3移⾏時に注意したこと 26/32 あるタイトルBの場合 • 現⾏ : ds2.8xlarge * 6nodes 移⾏後

    : ra3.4xlarge * 12nodes に移⾏するパターン • コスト – 約13%ほどRA3の⽅が安くなる (マネージドストレージの費⽤込) • 分析に使うクエリの処理時間 – 全体的に早くなった︕ • ロード処理にかかる時間 – 今度はかなり早くなった︕︕︕ – 前のパターンの逆でnode数が増えたから︖
  15. RA3移⾏時に注意したこと 27/32 • クエリ早くなる・ロード処理も早くなる・費⽤は少し下がる タイトルBのパターンに限ればいいことづくめなので移⾏しよう • 検証時同様、スナップショットからのリストアでRA3へ移⾏する 移⾏までの流れ – 適当なエンドポイント名でRA3のインスタンスを⽴ち上げる

    – 移⾏当⽇にスナップショットを作成 (1.5hくらい) – 新規RA3インスタンスに取得したスナップショットをリストア (1hくらい) – エンドポイントを既存のクラスターと新規RA3インスタンスで⼊れ替える (15minくらい)
  16. 移⾏した結果 30/32 • RA3に移⾏できたのはまだ最も⼤きい規模な1クラスターのみ 徐々に他のクラスターもRA3に移⾏していきたい – AQUA(Advanced Query Accelerator) がGAになれば、他のクラスターにも適⽤しやすくなるかも

    • 構成によってはロード処理や⼀部クエリの処理時間が増えてしまい、 業務に⽀障が出るため、現状のままでは少し難しそうだった… – 柔軟な構成が取れるように ra3.xlargeなどが出てくれたら嬉しい
  17. まとめ • ゲーム運営の扱うログデータは縦にも横にも⻑いのでRedshiftの ストレージ容量が圧迫されることが多い – Spectrum利⽤することで多少余裕ができた • Spectrumのパーティションデータ作成など、前処理を⾏なっている場合は UnloadクエリのParquet出⼒で代替できる –

    カラムナーDBが苦⼿な処理でなければ処理時間は早くなることが多いはず • RA3インスタンスに移⾏すれば更にストレージに余裕ができる – 従来のものより⾼スペックなnodeだが、事前に検証は必要 32/32