Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gaussian_Process_Models.pdf
Search
ディップ株式会社
PRO
October 29, 2025
Technology
0
6
Gaussian_Process_Models.pdf
ディップ株式会社
PRO
October 29, 2025
Tweet
Share
More Decks by ディップ株式会社
See All by ディップ株式会社
後追いテストからの脱却に向けた挑戦
dip_tech
PRO
1
600
Unit-Level_Models_and_Discrete_Demand.pdf
dip_tech
PRO
0
7
Model_Choice_and_Decision_Theory.pdf
dip_tech
PRO
0
7
Dirichlet_Process_Models.pdf
dip_tech
PRO
0
8
HIERARCHICAL MODELS for HETEROGENOUS UNITS(前編)
dip_tech
PRO
0
2
HIERARCHICAL MODELS for HETEROGENOUS UNITS(後編)
dip_tech
PRO
0
5
AI-DLC
dip_tech
PRO
0
22
dipAIを支えるLLM・検索技術
dip_tech
PRO
0
160
ホールインワン開発の夢と現実〜AIコーディングの生産性最大化への道〜
dip_tech
PRO
0
14
Other Decks in Technology
See All in Technology
QAセントラル組織が運営する自動テストプラットフォームの課題と現状
lycorptech_jp
PRO
0
410
ある編集者のこれまでとこれから —— 開発者コミュニティと歩んだ四半世紀
inao
4
3.1k
「データ無い! 腹立つ! 推論する!」から 「データ無い! 腹立つ! データを作る」へ チームでデータを作り、育てられるようにするまで / How can we create, use, and maintain data ourselves?
moznion
8
4.3k
「もっと正確に、もっと効率的に」ANDPADの写真書き込み機能における、 現場の声を形にしたエンハンス
andpad
0
110
大規模モノレポの秩序管理 失速しない多言語化フロントエンドの運用 / JSConf JP 2025
shoota
0
110
米軍Platform One / Black Pearlに学ぶ極限環境DevSecOps
jyoshise
1
350
Amazon ECS デプロイツール ecspresso の開発を支える「正しい抽象化」の探求 / YAPC::Fukuoka 2025
fujiwara3
12
3.2k
ユーザーストーリー x AI / User Stories x AI
oomatomo
0
190
LINEヤフー バックエンド組織・体制の紹介
lycorptech_jp
PRO
0
490
それでは聞いてください「Impeller導入に失敗しました」 #FlutterKaigi #skia
tacck
PRO
0
120
Capitole du Libre 2025 - Keynote - Cloud du Coeur
ju_hnny5
0
110
Flutterで実装する実践的な攻撃対策とセキュリティ向上
fujikinaga
2
420
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Bash Introduction
62gerente
615
210k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Gamification - CAS2011
davidbonilla
81
5.5k
Typedesign – Prime Four
hannesfritz
42
2.9k
GraphQLとの向き合い方2022年版
quramy
49
14k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Building Adaptive Systems
keathley
44
2.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Agile that works and the tools we love
rasmusluckow
331
21k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
Bayesian Data Analysis §21 Gaussian Process Models 久保知生 商品開発本部 DataBrain課
2024-12-02
(復習)パラメトリックモデル • 以下のパラメトリックな設定を考える。 – 𝑦𝑖 ∈ 𝒴 – 𝑦𝑖 |𝐹
∼ 𝑖𝑖𝑑 𝐹 – 𝐹 ∈ ℱ∗, 𝑤ℎ𝑒𝑟𝑒 ℱ∗ = 𝑁 𝑦|𝜇, 𝜏2 • ℱ∗はℱ = {𝒴上のすべての分布}に比べて小さいことがわか る。
(復習)ノンパラメトリックモデル • ノンパラメトリックベイズでは、より大きなℱの部分集合を 考える。 • そこで、2つのアプローチが考えられる。 – 基底関数によるアプローチ • 𝑔
𝑥; 𝜃 = σ𝑘=1 𝐾 𝜃𝑘 ℎ𝑘 𝑥 • ただし、ℎ𝑘 𝑥 は基底関数。 – process realizationによるアプローチ • {𝑔 𝑥 : 𝑥 ∈ 𝒳} • 例えば、𝑔 𝑥 はガウス過程からの観測結果。
(復習)基底関数モデル • ガウス分布の形をした基底関数を用意する。 – 𝜙ℎ 𝑥 = exp{− 𝑥−𝑥ℎ 2
𝑙2 } – 𝑥ℎ ∈ {−𝐻, ⋯ , −2, −1,0,1,2, ⋯ , 𝐻} • この基底関数を𝑥ℎ 上にグリッド状に多数配置し、𝑤ℎ ∈ 𝑅で適 当に重みづける。 – 𝑦 = 𝛴ℎ=−𝐻 𝐻 𝑤ℎ ⋅ exp{− 𝑥−𝑥ℎ 2 𝜎2 } • これにより、ほとんど任意の形の関数を表すことができる。
(復習)基底関数モデル
(復習)基底関数モデル • ノットの数(ℎ)が多すぎると計算が大変。 – 入力𝑥の次元が増えてパラメータ𝑤の次元が指数的に増える現 象を「次元の呪い」という。 • ノットの数(ℎ)が少なすぎると柔軟な回帰モデルを表 現ができない。
ガウス過程 • 簡単のため、誤差なく𝑦を𝑥の特徴ベクトル𝜙 𝑥 = 𝜙0 𝑥 , ⋯ ,
𝜙𝐻 𝑥 ′に回帰することを考える。 – 𝑦 = 𝑤0 𝜙0 𝑥 + ⋯ + 𝑤𝐻 𝜙𝐻 𝑥 – 行列形式では:𝑦 = 𝛷𝑤 • 𝑤 ∼ 𝑁 0, 𝜆2𝐼 • このとき、𝑦の期待値と分散はそれぞれ – 𝐸 𝑦 = 𝐸 𝛷𝑤 = 𝛷𝐸 𝑤 = 0 – 𝑉 𝑦 = 𝐸 𝑦𝑦′ − 𝐸 𝑦 𝐸 𝑦 ′ = 𝐸{ 𝛷𝑤 𝛷𝑤 ′} = 𝛷 𝑤𝑤′ 𝛷′ = 𝜆2𝛷𝛷′
ガウス過程 • したがって、𝑦 ∼ 𝑁 0, 𝜆2𝛷𝛷′ – 𝑦の分布を考えるにあたり、𝑤が消去されていることに注意。 •
𝐾 = 𝜆2𝛷𝛷′とおくと、𝐾の 𝑛, 𝑛′ 要素は以下で与えられる。 – 𝐾𝑛𝑛′ = 𝜆2𝜙 𝑥𝑛 ′𝜙 𝑥𝑛′ – つまり、𝐾はあらゆる入力𝜙0 𝑥 , ⋯ , 𝜙𝐻 𝑥 の共分散。 • 𝐾𝑛𝑛′ の値を与える関数をカーネル関数という。 – 𝐾𝑛𝑛′ = 𝑘 𝑥𝑛 , 𝑥𝑛′ = 𝜆2𝜙 𝑥𝑛 ′𝜙 𝑥𝑛′
ガウス過程 • 無限個の入力𝑥 = 𝑥1 , 𝑥2 , ⋯ に対応する出力𝑓
= 𝑓 𝑥1 , 𝑓 𝑥2 , ⋯ の同時分布が多変量ガウス過程に従う とき、以下のように表現する。 – 𝑓 ∼ 𝐺𝑃 𝑚, 𝐾 • 入力𝑥間の類似度は、以下で表される。 – 𝑘 𝑥, 𝑥′ = 𝜏exp{− 𝑥−𝑥ℎ 2 2𝑙2 }
𝜏で振れ幅、𝑙で密度を調整
さまざまなカーネル • 線形カーネル – 𝑘 𝑥, 𝑥′ = 𝑥𝑇𝑥′ •
指数カーネル – 𝑘 𝑥, 𝑥′ = exp{− 𝑥−𝑥′ 𝑙 } • 周期カーネル – 𝑘 𝑥, 𝑥′ = exp{𝜏cos 𝑥−𝑥′ 𝑙 }
例:出生日の分析 • 誕生日ごとの誕生頻度が知りたい。 • 1969年-1988年のアメリカが対象。 • 𝑦𝑡 𝑡 = 𝑓1
𝑡 + 𝑓2 𝑡 + 𝑓3 𝑡 + 𝑓4 𝑡 + 𝑓5 𝑡 + 𝜖𝑡 – 𝑡は1969年1月1日から数えた日数
長期トレンド 𝑓1 𝑡 ∼ 𝐺𝑃 0, 𝑘1 , 𝑘1 𝑡,
𝑡′ = 𝜎1 2exp − 𝑡 − 𝑡′ 2 2𝑙1 2
短期トレンド 𝑓2 𝑡 ∼ 𝐺𝑃 0, 𝑘2 , 𝑘2 𝑡,
𝑡′ = 𝜎2 2exp − 𝑡 − 𝑡′ 2 2𝑙2 2
曜日トレンド 𝑓3 𝑡 ∼ 𝐺𝑃 0, 𝑘3 , 𝑘3 𝑡,
𝑡′ = 𝜎3 2exp − 2𝑠𝑖𝑛2 𝜋 𝑡 − 𝑡′ /7 2𝑙3,1 2 exp − 𝑡 − 𝑡′ 2 2𝑙3,2 2
日次トレンド(季節トレンド) 𝑓4 𝑡 ∼ 𝐺𝑃 0, 𝑘4 , 𝑘4 𝑡,
𝑡′ = 𝜎4 2exp − 2𝑠𝑖𝑛2 𝜋 𝑡 − 𝑡′ /365.25 2𝑙4,1 2 exp − 𝑡 − 𝑡′ 2 2𝑙4,2 2
特定の日のトレンド 𝑓5 𝑡 = 𝐼𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑎𝑦 𝑡 𝛽𝑎 + 𝐼𝑤𝑒𝑒𝑘𝑒𝑛𝑑 𝑡
𝐼𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑎𝑦 𝑡 𝛽𝑏
APPENDIX
非ガウス尤度への対応 • 潜在関数𝑓の事後分布 – 𝑝 𝑓|𝑥, 𝑦, 𝜃, 𝜙 ∝
𝑝 𝑦|𝑓, 𝜙 𝑝 𝑓|𝑥, 𝜃 • 正規分布で近似 – 𝑝 𝑓|𝑥, 𝑦, 𝜃, 𝜙 ≈ 𝑁 𝑓| መ 𝑓, 𝛴 – 𝛴−1 = 𝐾 𝑥, 𝑥 + 𝑊 – 𝑊 = 𝑑2 𝑑𝑓2 log𝑝(𝑦 𝑓𝑖 , 𝜙) 𝑓𝑖= 𝑓𝑖 • 予測分布も得られる – 𝑝 𝑦𝑖 | 𝑥𝑖 , 𝑥, 𝑦, 𝜃, 𝜙
さらに柔軟なモデリング • 𝑝 𝑦|𝑓 = 𝑒𝑓 𝑦 ∫ 𝑒𝑓 𝑦′
𝑑𝑦′ – 𝑓 ∼ 𝐺𝑃 𝑚, 𝐾 – 𝑘 𝑦, 𝑦′ = 𝜏2exp − 𝑦−𝑦′ 2 2𝑙2 – 𝑓の積分が難しいので、有限の基底関数などを使おう。