Upgrade to Pro — share decks privately, control downloads, hide ads and more …

RICAM 2018 Nov

RICAM 2018 Nov

Presentation at the RICAM Workshop on Multivariate Algorithms and Information Based Complexity

Fred J. Hickernell

November 09, 2018
Tweet

More Decks by Fred J. Hickernell

Other Decks in Research

Transcript

  1. Adaptive Approximation for Multivariate Linear Problems with Inputs Lying in

    a Cone Fred J. Hickernell Department of Applied Mathematics Center for Interdisciplinary Scientific Computation Illinois Institute of Technology [email protected] mypages.iit.edu/~hickernell Joint work with Yuhan Ding, Peter Kritzer, and Simon Mak This work partially supported by NSF-DMS-1522687 and NSF-DMS-1638521 (SAMSI) RICAM Workshop on Multivariate Algorithms and Information-Based Complexity, November 9, 2018
  2. Thank you Thank you all for your participation Thanks to

    Peter Kritzer and Annette Weihs for doing all the work of organizing
  3. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Context Tidbits from talks this week My reponse Henryk, Klaus, Greg, Stefan, Erich, ... Many results for f ∈ Let’s obtain analogous re- sults for f ∈ ? Houman Let’s learn the appropriate ker- nel from the function data Will only work for nice functions in a Klaus “This adaptive algorithm has no theory” We want to construct adaptive algorithms with theory Henryk Tractability Yes! Greg POD weights Yes! Mac Function values are expensive Yes! 3/21
  4. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Multivariate Linear Problems Given f ∈ F find S(f) ∈ G, where S : F → G is linear, e.g., S(f) = Rd f(x) (x) dx S(f) = f S(f) = ∂f ∂x1 −∇2S(f) = f, S(f) = 0 on boundary Successful algorithms A(C, Λ) := {A : C × (0, ∞) → G such that S(f) − A(f, ε) G ε ∀f ∈ C ⊆ F, ε > 0} where A(f, ε) depends on function values, Λstd, Fourier coefficients, Λser, or any linear function- als, Λall, e.g., Sapp(f, n) = n i=1 f(xi) gi, gi ∈ G Sapp(f, n) = n i=1 fi gi, gi ∈ G Sapp(f, n) = n i=1 Li(f) gi, gi ∈ G A(f, ε) = Sapp(f, n)+ stopping criterion C is a 4/21
  5. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Issues Given f ∈ F find S(f) ∈ G, where S : F → G is linear Successful algorithms A(C, Λ) := {A : C×(0, ∞) → G such that S(f) − A(f, ε) G ε ∀f ∈ C ⊆ F, ε > 0} where A(f, ε) depends on function values, Λstd, Fourier coefficients, Λser, or any linear functionals, Λall Solvability : A(C, Λ) = ∅ Construction: Find A ∈ A(C, Λ) Kunsch, R. J., Novak, E. & Rudolf, D. Solvable Integration Problems and Optimal Sample Size Selection. Journal of Complexity. To appear (2018). Traub, J. F., Wasilkowski, G. W. & Woźniakowski, H. Information-Based Complexity. (Academic Press, Boston, 1988). Novak, E. & Woźniakowski, H. Tractability of Multivariate Problems Volume I: Linear Information. EMS Tracts in Mathematics 6 (European Mathematical Society, Zürich, 2008). 5/21
  6. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Issues Given f ∈ F find S(f) ∈ G, where S : F → G is linear Successful algorithms A(C, Λ) := {A : C×(0, ∞) → G such that S(f) − A(f, ε) G ε ∀f ∈ C ⊆ F, ε > 0} where A(f, ε) depends on function values, Λstd, Fourier coefficients, Λser, or any linear functionals, Λall Solvability : A(C, Λ) = ∅ Construction: Find A ∈ A(C, Λ) Cost: cost(A, f, ε) = # of function data cost(A, C, ε, ρ) = max f∈C∩Bρ cost(A, f, ε) Bρ := {f ∈ F : f F ρ} Complexity : comp(A(C, Λ), ε, ρ) = min A∈A(C,Λ) cost(A, C, ε, ρ) Optimality: cost(A, C, ε, ρ) comp(A(C, Λ), ωε, ρ) Kunsch, R. J., Novak, E. & Rudolf, D. Solvable Integration Problems and Optimal Sample Size Selection. Journal of Complexity. To appear (2018). Traub, J. F., Wasilkowski, G. W. & Woźniakowski, H. Information-Based Complexity. (Academic Press, Boston, 1988). Novak, E. & Woźniakowski, H. Tractability of Multivariate Problems Volume I: Linear Information. EMS Tracts in Mathematics 6 (European Mathematical Society, Zürich, 2008). 5/21
  7. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Issues Given f ∈ F find S(f) ∈ G, where S : F → G is linear Successful algorithms A(C, Λ) := {A : C×(0, ∞) → G such that S(f) − A(f, ε) G ε ∀f ∈ C ⊆ F, ε > 0} where A(f, ε) depends on function values, Λstd, Fourier coefficients, Λser, or any linear functionals, Λall Solvability : A(C, Λ) = ∅ Construction: Find A ∈ A(C, Λ) Cost: cost(A, f, ε) = # of function data cost(A, C, ε, ρ) = max f∈C∩Bρ cost(A, f, ε) Bρ := {f ∈ F : f F ρ} Complexity : comp(A(C, Λ), ε, ρ) = min A∈A(C,Λ) cost(A, C, ε, ρ) Optimality: cost(A, C, ε, ρ) comp(A(C, Λ), ωε, ρ) Tractability : comp(A(C, Λ), ε, ρ) Cρpε−pdq Kunsch, R. J., Novak, E. & Rudolf, D. Solvable Integration Problems and Optimal Sample Size Selection. Journal of Complexity. To appear (2018). Traub, J. F., Wasilkowski, G. W. & Woźniakowski, H. Information-Based Complexity. (Academic Press, Boston, 1988). Novak, E. & Woźniakowski, H. Tractability of Multivariate Problems Volume I: Linear Information. EMS Tracts in Mathematics 6 (European Mathematical Society, Zürich, 2008). 5/21
  8. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Issues Given f ∈ F find S(f) ∈ G, where S : F → G is linear Successful algorithms A(C, Λ) := {A : C×(0, ∞) → G such that S(f) − A(f, ε) G ε ∀f ∈ C ⊆ F, ε > 0} where A(f, ε) depends on function values, Λstd, Fourier coefficients, Λser, or any linear functionals, Λall Solvability : A(C, Λ) = ∅ Construction: Find A ∈ A(C, Λ) Cost: cost(A, f, ε) = # of function data cost(A, C, ε, ρ) = max f∈C∩Bρ cost(A, f, ε) Bρ := {f ∈ F : f F ρ} Complexity : comp(A(C, Λ), ε, ρ) = min A∈A(C,Λ) cost(A, C, ε, ρ) Optimality: cost(A, C, ε, ρ) comp(A(C, Λ), ωε, ρ) Tractability : comp(A(C, Λ), ε, ρ) Cρpε−pdq Implementation in open source software Kunsch, R. J., Novak, E. & Rudolf, D. Solvable Integration Problems and Optimal Sample Size Selection. Journal of Complexity. To appear (2018). Traub, J. F., Wasilkowski, G. W. & Woźniakowski, H. Information-Based Complexity. (Academic Press, Boston, 1988). Novak, E. & Woźniakowski, H. Tractability of Multivariate Problems Volume I: Linear Information. EMS Tracts in Mathematics 6 (European Mathematical Society, Zürich, 2008). 5/21
  9. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Cones × Ball Bρ := {f ∈ F : f F ρ} (Non-Convex) Cone C Assume set of inputs, C ⊆ F, is a cone, not a ball Cone means f ∈ C =⇒ af ∈ C ∀a ∈ R Cones are unbounded If we can bound the S(f) − Sapp(f, n) G for f ∈ cone, then we can typically also bound the error for af Philosophy: What we cannot observe about f is not much worse than what we can observe about f 6/21
  10. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    “But I Like !” How might you construct an algorithm if you insist on using ? Step 1 Pick with a default radius ρ, and assume input f ∈ Bρ Step 2 Choose n large enough so that S(f) − Sapp(f, n) G S − Sapp(·, n) F→G ρ ε where Sapp(f, n) = n i=1 Li(f)gi then return A(f, ε) = Sapp(f, n) 7/21
  11. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    “But I Like !” How might you construct anadaptive algorithm if you insist on using ? Step 1 Pick with a default radius ρ, and assume input f ∈ Bρ Step 2 Choose n large enough so that S(f) − Sapp(f, n) G S − Sapp(·, n) F→G ρ ε where Sapp(f, n) = n i=1 Li(f)gi Step 3 Let fmin ∈ F be the minimum norm interpolant of the data L1(f), . . . , Ln(f) Step 4 If C fmin F ρ for some preset inflation factor, C, then return A(f, ε) = Sapp(f, n); otherwise, choose ρ = 2C fmin F , and go to Step 2 This succeeds for the cone defined as those functions in F whose norms are not much larger than their minimum norm interpolants. 7/21
  12. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    When Is (S : C ⊆ F → G, Λ) Solvable? A(C, Λ) := {A : C × (0, ∞) → G such that S(f) − A(f, ε) G ε ∀f ∈ C ⊆ F, ε > 0} where A(f, ε) depends on {Li(f)}n i=1 ∈ Λn ⊆ F∗n Definition (S : C ⊆ F → G, Λ) solvable ⇐⇒ A(C, Λ) = ∅ Lemma f1, f2 ∈ C and A(f1, ε) = A(f2, ε) =⇒ S(f1 − f2) G 2ε Corollary (S : C ⊆ F → G, Λ) solvable and ∃f ∈ C, ε > 0 with A(f, ε) = A(0, ε) =⇒ S(f) = 0 Theorem (S : C ⊆ F → G, Λ) solvable and C is a vector space ⇐⇒ ∃ n ∈ N, L ∈ Λn, g ∈ Gn such that S(f) = n i=1 Li(f)gi ∀f ∈ C exactly Proof E.g. [0,1]d ·(x) dx : C1,...,1[0, 1]d → R, Λstd/all is unsolvable/solvable 8/21
  13. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Inputs and Outputs Input: f = j∈N f(j)uj, Output: g = j∈N ^ g(j)vj, S(uj) = vj, E.g., Integration: S(uj) = [0,1]d uj(x) dx = vj, Function recovery: S(uj) = uj = vj, Fixed sample size algorithm: Sapp(f, n) = n i=1 Li(f)gi A(f, ε) = Sapp(f, n) + stopping criterion Three scenarios presented here: Integration use Λstd, but cost, complexity, etc. lacking General Linear Problems use Λser, have cost, complexity, and optimality Function Approximation use Λser, learn coordinate and smoothness weights 9/21
  14. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Integration Using Function Values, Λstd S(f) = [0,1]d f(x) dx f = j∈N f(j)uj, uj = Cosine/Sine or Walsh, S(uj) = δj,0 Sapp(f, n) = 1 n n i=1 f(xi) S(f) − Sapp(f, n) 0=j∈dual set f(j) Dick, J., Kuo, F. & Sloan, I. H. High dimensional integration — the Quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013). 10/21
  15. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Complex Exponential and Walsh Bases for Cubature Cosine & Sine Walsh 11/21
  16. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Cones of Integrands Whose Fourier Series Coefficients Decay Steadily n0 = 0, nk = 2k−1, k ∈ N, j ordered, true coef. = f(j) ≈ fdisc (j) = discrete coef. σk(f) = nk i=nk−1 +1 f(ji) , ^ σk, (f) = nk i=nk−1 +1 ∞ m=1 f(ji+mn ) , σdisc,k(f) = nk i=nk−1 +1 fdisc (ji) C := f ∈ F : σ (f) a1 b −k 1 σk(f), ^ σk, (f) a2b −k 2 σ (f) ∀k a1, a2 > 1 > b1, b2 Sapp(f, nk) = 1 nk nk i=1 f(xi) S(f) − Sapp(f, nk) 0=j∈dual set f(j) C(k)σdisc,k(f) A(f, ε) = S(f, nk) for the smallest k satisfying C(k)σdisc,k(f) ε Have cost(f, A, ε); No cost(A, C, ε, ρ), comp(A(C, Λstd), ε, ρ), or tractability results yet H., F. J. & Jiménez Rugama, Ll. A. Reliable Adaptive Cubature Using Digital Sequences. in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014 (eds Cools, R. & Nuyens, D.) 163. arXiv:1410.8615 [math.NA] (Springer-Verlag, Berlin, 2016), 367–383, Jiménez Rugama, Ll. A. & H., F. J. Adaptive Multidimensional Integration Based on Rank-1 Lattices. in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014 (eds Cools, R. & Nuyens, D.) 163. arXiv:1411.1966 (Springer-Verlag, Berlin, 2016), 407–422. 12/21
  17. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Option Pricing fair price = Rd e−rT max   1 d d j=1 Sj − K, 0   e−zTz/2 (2π)d/2 dz ≈ $13.12 Sj = S0e(r−σ2/2)jT/d+σxj = stock price at time jT/d, x = Az, AAT = Σ = min(i, j)T/d d i,j=1 , T = 1/4, d = 13 here Error Median Worst 10% Worst 10% Tolerance Method Error Accuracy n Time (s) 1E−2 IID diff 2E−3 100% 6.1E7 33.000 1E−2 Sh. Latt. PCA 1E−3 100% 1.6E4 0.041 1E−2 Scr. Sobol’ PCA 1E−3 100% 1.6E4 0.040 1E−2 Scr. Sob. cont. var. PCA 2E−3 100% 4.1E3 0.019 Choi, S.-C. T., Ding, Y., H., F. J., Jiang, L., Jiménez Rugama, Ll. A., Li, D., Jagadeeswaran, R., Tong, X., Zhang, K., et al. GAIL: Guaranteed Automatic Integration Library (Versions 1.0–2.2). MATLAB software. 2013–2017. http://gailgithub.github.io/GAIL_Dev/. 14/21
  18. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Solving General Linear Problems Using Series Coefficients, Λser F :=    f = j∈N f(j)uj : f F := f(j) λj j∈N 2    λ affects convergence rate & tractability G := g = j∈N ^ g(j)vj : g G := ^ g 2 , vj = S(uj) λj1 λj2 · · · , n0 < n1 < n2 < · · · , σk(f) = nk i=nk−1 +1 f(ji) 2 , k ∈ N C := f ∈ F : σ (f) ab −kσk(f) ∀k a > 1 > b series coef. decay steadily Sapp(f, nk) = nk i=1 f(ji)vji is optimal for fixed nk, S(f) − Sapp(f, nk) G abσk(f) √ 1 − b2 A(f, ε) = Sapp(f, nk) for the smallest k satisfying σk(f) ε √ 1 − b2 ab Ding, Y., H., F. J. & Jiménez Rugama, Ll. A. An Adaptive Algorithm Employing Continuous Linear Functionals. 2018+. 15/21
  19. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Solving General Linear Problems Using Series Coefficients, Λser λj1 λj2 · · · , n0 < n1 < n2 < · · · , σk(f) = nk i=nk−1 +1 f(ji) 2 , k ∈ N C := f ∈ F : σ (f) ab −kσk(f) ∀k a > 1 > b series coef. decay steadily Sapp(f, nk) = nk i=1 f(ji)vji is optimal for fixed nk, S(f) − Sapp(f, nk) G abσk(f) √ 1 − b2 A(f, ε) = Sapp(f, nk) for the smallest k satisfying σk(f) ε √ 1 − b2 ab cost(A, C, ε, ρ) = n † , † min ∈ N : ρ2 ε2 (1 − b2) a2b2 −1 k=1 b2(k− ) a2λ2 nk−1 +1 + 1 λ2 n −1+1 cost(A, C, ε, ρ) essentially no worse than comp(A(C, Λall), ε, ρ) No tractability results Ding, Y., H., F. J. & Jiménez Rugama, Ll. A. An Adaptive Algorithm Employing Continuous Linear Functionals. 2018+. 15/21
  20. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Function Approximation when Function Values Are Expensive F :=    f = j∈Nd 0 f(j)uj : f F := f(j) λj j∈N ∞    λ affects convergence rate & tractability G := g = j∈Nd 0 ^ g(j)vj : g G := ^ g 1 , vj = S(uj) = uj λj = Γ j 0 d =1 j >0 γ sj    γ = coordinate importance Γr = order size sj = smoothness degree POSD weights reflect effect sparsity, effect hierarchy, effect heredity, and effect smoothness λj1 λj2 · · · , Sapp(f, n) = n i=1 f(ji)uji , S(f) − Sapp(f, nk) G f F i=n+1 λji C := f ∈ F : those functions for which f F can be inferred from a pilot sample Wu, C. F. J. & Hamada, M. Experiments: Planning, Analysis, and Parameter Design Optimization. (John Wiley & Sons, Inc., New York, 2000), Kuo, F. Y., Schwab, C. & Sloan, I. H. Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic Partial Differential Equations with Random Coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012). 16/21
  21. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Legendre and Chebyshev Bases for Function Approximation Legendre Chebyshev 17/21
  22. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Cheng and Sandu Function Chebyshev polynomials, Order weights Γk = 1, Coordinate weights γ inferred, Smoothness weights sj inferred, Λstd Bingham, D. The Virtual Library of Simulation Experiments: Test Functions and Data Sets. 2017. https://www.sfu.ca/~ssurjano/index.html (2017). 18/21
  23. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Take Home Messages Assuming that the input functions lie in convex cones allow us to construct adaptive algorithms Cone definitions reflect prior beliefs and/or practical considerations Demonstration of concept Integration using Λstd Constructed A ∈ A(C, Λstd) No cost, complexity, or tractability yet General linear problems Constructed A ∈ A(C, Λser), upper bound on cost(A, C, ε, ρ), lower bound on comp(A(C, Λall), ε, ρ), optimality No tractability yet Function approximation (recovery) Constructed A ∈ A(C, Λser), algorithm learns weights, works in practice for Λstd Remaining theory in progress Much to be done 19/21
  24. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Kunsch, R. J., Novak, E. & Rudolf, D. Solvable Integration Problems and Optimal Sample Size Selection. Journal of Complexity. To appear (2018). Traub, J. F., Wasilkowski, G. W. & Woźniakowski, H. Information-Based Complexity. (Academic Press, Boston, 1988). Novak, E. & Woźniakowski, H. Tractability of Multivariate Problems Volume I: Linear Information. EMS Tracts in Mathematics 6 (European Mathematical Society, Zürich, 2008). Dick, J., Kuo, F. & Sloan, I. H. High dimensional integration — the Quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013). H., F. J. & Jiménez Rugama, Ll. A. Reliable Adaptive Cubature Using Digital Sequences. in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014 (eds Cools, R. & Nuyens, D.) 163. arXiv:1410.8615 [math.NA] (Springer-Verlag, Berlin, 2016), 367–383. 20/21
  25. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Jiménez Rugama, Ll. A. & H., F. J. Adaptive Multidimensional Integration Based on Rank-1 Lattices. in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014 (eds Cools, R. & Nuyens, D.) 163. arXiv:1411.1966 (Springer-Verlag, Berlin, 2016), 407–422. Choi, S.-C. T. et al. GAIL: Guaranteed Automatic Integration Library (Versions 1.0–2.2). MATLAB software. 2013–2017. http://gailgithub.github.io/GAIL_Dev/. Ding, Y., H., F. J. & Jiménez Rugama, Ll. A. An Adaptive Algorithm Employing Continuous Linear Functionals. 2018+. Wu, C. F. J. & Hamada, M. Experiments: Planning, Analysis, and Parameter Design Optimization. (John Wiley & Sons, Inc., New York, 2000). Kuo, F. Y., Schwab, C. & Sloan, I. H. Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic Partial Differential Equations with Random Coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012). 20/21
  26. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Bingham, D. The Virtual Library of Simulation Experiments: Test Functions and Data Sets. 2017. https://www.sfu.ca/~ssurjano/index.html (2017). (eds Cools, R. & Nuyens, D.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. 163 (Springer-Verlag, Berlin, 2016). 21/21
  27. Introduction Integration General Linear Problems Function Approximation Summary References Bonus

    Proof of Theorem for Solvability on a Vector Space Let the cone C be a vector space and let A be a successful algorithm ε > 0 be any positive tolerance {L1, . . . , LM} ⊂ Λ be the linear functionals used by A(0, ε), and {L1, . . . , Lm} be a basis for span({L1, . . . , LM}) n = min(m, dim(C)) {f1, . . . , fn} ⊂ C satisfy Li(fj) = δi,j, i = 1, . . . , n, j = 1, . . . , m For any f ∈ C, let f = f − n i=1 Li(f)fi, and note that Lj(f) = 0 for j = 1, . . . , M. Thus, A(f, ε) = A(0, ε), and so by the Corollary , 0 = S(f) = S(f) − n i=1 Li(f)S(fi), which implies S(f) = n i=1 Li(f)S(fi) Back 21/21