Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
人工知能と機械学習とデータ分析の違いを理解する
Search
h-fkn
June 08, 2019
Technology
0
110
人工知能と機械学習とデータ分析の違いを理解する
バイオスブートキャンプでの講義「PythonでAIアプリを作ってみよう」での登壇資料です。
h-fkn
June 08, 2019
Tweet
Share
More Decks by h-fkn
See All by h-fkn
The advantages and disadvantages of using machine learning with enebular
fkn0839
0
270
ラズパイで写真を撮った話_IoTLT_vol.66_2200812.pdf
fkn0839
0
430
俺のNETFLIX season2 AmazonPersonalize
fkn0839
0
550
俺のNETFLIX season1
fkn0839
0
270
ゆるふわマシーンラーニング#2_内容調整中()
fkn0839
0
320
ゆるふわマシーンラーニング「❝ Google AutoML Tablesでお手軽AI ❞と題して話すつもりだったけど、実際に使ったらお手軽()だった件について5分以内で話す」
fkn0839
1
4.2k
データ分析プロセス/AIアプリケーションの基本設計
fkn0839
0
190
DataScienceBOOTCAMP5th_part1
fkn0839
0
2k
G'SACADEMY LAB5th DataScience
fkn0839
0
220
Other Decks in Technology
See All in Technology
AWSと生成AIで学ぶ!実行計画の読み解き方とSQLチューニングの実践
yakumo
2
310
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
1
380
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
180
Redshift認可、アップデートでどう変わった?
handy
1
130
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
500
善意の活動は、なぜ続かなくなるのか ーふりかえりが"構造を変える判断"になった半年間ー
matsukurou
0
330
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
140
複雑さを受け入れるか、拒むか? - 事業成長とともに育ったモノリスを前に私が考えたこと #RSGT2026
murabayashi
1
1.5k
人工知能のための哲学塾 ニューロフィロソフィ篇 第零夜 「ニューロフィロソフィとは何か?」
miyayou
0
390
CQRS/ESになぜアクターモデルが必要なのか
j5ik2o
0
720
技術選定、下から見るか?横から見るか?
masakiokuda
0
180
Featured
See All Featured
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
420
Marketing to machines
jonoalderson
1
4.5k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.5k
Code Review Best Practice
trishagee
74
19k
The World Runs on Bad Software
bkeepers
PRO
72
12k
The Language of Interfaces
destraynor
162
26k
Writing Fast Ruby
sferik
630
62k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
160
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
870
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Claude Code のすすめ
schroneko
67
210k
Designing for Timeless Needs
cassininazir
0
110
Transcript
PythonでAIアプリを作ってみよう @hidefkn 2019-05-30@デジタルハリウッド⼤学院
⾃⼰紹介 ぬるさくAIアプリ開発勉強会 1 • ふかの ひで @hidefkn • 現職:某AIスタートアップ(7→14名?) •
経歴:コンサル→エンジニア→データサイエンティスト • プログラミング歴:およそ2年 • 趣味:ネトフリにハマってます。
AIアプリ開発の本を書きました ぬるさくAIアプリ開発勉強会 2 技術書典6にて、Nuxt.jsとPythonでつくる『ぬるさくAIアプリ開発⼊⾨』という技術書を書きました。 プログラミングスクールの同期と⼆⼈で書きました。 https://booth.pm/ja/items/1296418
⼤切にしたいこと ぬるさくAIアプリ開発勉強会 3 戦わずして勝つ まずはできる範囲でやってみて、楽しむ! 難しく考えて、無理にすべてを理解しようとしないこと!(戦わない)
講義の構成 ぬるさくAIアプリ開発勉強会 4 【前提編】 ⼈⼯知能と機械学習とデータ分析 【理論編】 第1章 AIアプリ開発の進め⽅ 第2章 スコアリングモデル概論
【実装編】 第3章 スコアリングモデル構築 第4章 NuxtでAIアプリのフロントを作ろう 第5章 PythonでAPIを作成しよう 第6章 AIアプリをデプロイしよう 本⽇の学習範囲
ぬるさくAIアプリ開発勉強会 5 ⼈⼯知能と機械学習とデータ分析 何となく理解している⾔葉を、具体的に理解しよう
AI(⼈⼯知能)とは ぬるさくAIアプリ開発勉強会 6 ⼈⼯知能とは、ざっくり⾔えば概念である 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 定 量 化 ︵ 化 ︶ 機械学習 モデル • SVM • 重回帰分析 • 決定⽊ • クラスタリング • DeepLearning アプリ 何(画像・⾳声・⽂字 等)を学習するかによって、AI(⼈⼯知能)のアウトプットは異なる
事例1: ニュース記事キュレーションアプリ ぬるさくAIアプリ開発勉強会 7 ⼈⼯知能 = 概念 => 編集者の代わりに編集する知性 画像認識
⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚 味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 定 量 化 ︵ 化 ︶ 機械学習 ユーザーが読みたいと思う 記事を予測するモデル • SVM • 重回帰分析 • 決定⽊ • クラスタリング • DeepLearning
事例2: ポートレートモード ぬるさくAIアプリ開発勉強会 8 ⼈⼯知能 = 概念 => ⽬を使わずに物体を判定する 画像認識
⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚 味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 定 量 化 ︵ 化 ︶ 機械学習 ⼈物と背景を判別する 分類モデル • SVM • 重回帰分析 • 決定⽊ • クラスタリング • DeepLearning
機械学習とは、規則性を⾒つけるための⼿法・技術 ぬるさくAIアプリ開発勉強会 9 ⼈⼯知能 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 数 値 機械学習 モデル 数値から規則 性を⾒つける ための⼿法 アプリ ⼈間が持つ学習にあたる仕組みを機械(特にコンピュータ)で実現する技術・⼿法の総称である(Wikipedia)
データ分析とは、データから規則性を⾒つける業務? ぬるさくAIアプリ開発勉強会 10 ⼈⼯知能 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 数 値 機械学習 モデル 数値から規則 性を⾒つける ための⼿法 アプリ データ分析
機械学習とデータ分析 ぬるさくAIアプリ開発勉強会 11 ⼈⼯知能 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 数 値 機械学習 モデル 数値から規則 性を⾒つける ための⼿法 アプリ データ分析 データサイエンティストの業務範囲? モデリング
機械学習とデータ分析 ぬるさくAIアプリ開発勉強会 12 ⼈⼯知能 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 定量化するための⽅法論 ⼒ 機械学習 モデル 数値から規則 性を⾒つける ための⼿法を 選ぶ アプリ データ分析 モデリング データサイエンス⼒ エンジ ニアリ ング⼒
まとめ ぬるさくAIアプリ開発勉強会 13 • AI(⼈⼯知能)とは何ですか? • 機械学習とは何ですか? • 機械学習とデータ分析の違いは?