Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
人工知能と機械学習とデータ分析の違いを理解する
Search
h-fkn
June 08, 2019
Technology
0
100
人工知能と機械学習とデータ分析の違いを理解する
バイオスブートキャンプでの講義「PythonでAIアプリを作ってみよう」での登壇資料です。
h-fkn
June 08, 2019
Tweet
Share
More Decks by h-fkn
See All by h-fkn
The advantages and disadvantages of using machine learning with enebular
fkn0839
0
260
ラズパイで写真を撮った話_IoTLT_vol.66_2200812.pdf
fkn0839
0
420
俺のNETFLIX season2 AmazonPersonalize
fkn0839
0
500
俺のNETFLIX season1
fkn0839
0
270
ゆるふわマシーンラーニング#2_内容調整中()
fkn0839
0
310
ゆるふわマシーンラーニング「❝ Google AutoML Tablesでお手軽AI ❞と題して話すつもりだったけど、実際に使ったらお手軽()だった件について5分以内で話す」
fkn0839
1
4.1k
データ分析プロセス/AIアプリケーションの基本設計
fkn0839
0
190
DataScienceBOOTCAMP5th_part1
fkn0839
0
2k
G'SACADEMY LAB5th DataScience
fkn0839
0
210
Other Decks in Technology
See All in Technology
都市スケールAR制作で気をつけること
segur
0
180
FFMとJVMの実装から学ぶJavaのインテグリティ
kazumura
0
150
Post-AIコーディング時代のエンジニア生存戦略
shinoyu
0
300
クレジットカードの不正を防止する技術
yutadayo
17
7.9k
スタートアップの事業成長を支えるアーキテクチャとエンジニアリング
doragt
1
4.8k
現地速報!Microsoft Ignite 2025 M365 Copilotアップデートレポート
kasada
2
1.5k
AI × クラウドで シイタケの収穫時期を判定してみた
lamaglama39
1
380
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
1.9k
Perlの生きのこり - YAPC::Fukuoka 2025
kfly8
0
610
Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
peisuke
0
160
レガシーで硬直したテーブル設計から変更容易で柔軟なテーブル設計にする
red_frasco
4
430
生成AI時代に若手エンジニアが最初に覚えるべき内容と、その学習法
starfish719
2
560
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
39
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Side Projects
sachag
455
43k
The Invisible Side of Design
smashingmag
302
51k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
980
Into the Great Unknown - MozCon
thekraken
40
2.2k
Transcript
PythonでAIアプリを作ってみよう @hidefkn 2019-05-30@デジタルハリウッド⼤学院
⾃⼰紹介 ぬるさくAIアプリ開発勉強会 1 • ふかの ひで @hidefkn • 現職:某AIスタートアップ(7→14名?) •
経歴:コンサル→エンジニア→データサイエンティスト • プログラミング歴:およそ2年 • 趣味:ネトフリにハマってます。
AIアプリ開発の本を書きました ぬるさくAIアプリ開発勉強会 2 技術書典6にて、Nuxt.jsとPythonでつくる『ぬるさくAIアプリ開発⼊⾨』という技術書を書きました。 プログラミングスクールの同期と⼆⼈で書きました。 https://booth.pm/ja/items/1296418
⼤切にしたいこと ぬるさくAIアプリ開発勉強会 3 戦わずして勝つ まずはできる範囲でやってみて、楽しむ! 難しく考えて、無理にすべてを理解しようとしないこと!(戦わない)
講義の構成 ぬるさくAIアプリ開発勉強会 4 【前提編】 ⼈⼯知能と機械学習とデータ分析 【理論編】 第1章 AIアプリ開発の進め⽅ 第2章 スコアリングモデル概論
【実装編】 第3章 スコアリングモデル構築 第4章 NuxtでAIアプリのフロントを作ろう 第5章 PythonでAPIを作成しよう 第6章 AIアプリをデプロイしよう 本⽇の学習範囲
ぬるさくAIアプリ開発勉強会 5 ⼈⼯知能と機械学習とデータ分析 何となく理解している⾔葉を、具体的に理解しよう
AI(⼈⼯知能)とは ぬるさくAIアプリ開発勉強会 6 ⼈⼯知能とは、ざっくり⾔えば概念である 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 定 量 化 ︵ 化 ︶ 機械学習 モデル • SVM • 重回帰分析 • 決定⽊ • クラスタリング • DeepLearning アプリ 何(画像・⾳声・⽂字 等)を学習するかによって、AI(⼈⼯知能)のアウトプットは異なる
事例1: ニュース記事キュレーションアプリ ぬるさくAIアプリ開発勉強会 7 ⼈⼯知能 = 概念 => 編集者の代わりに編集する知性 画像認識
⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚 味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 定 量 化 ︵ 化 ︶ 機械学習 ユーザーが読みたいと思う 記事を予測するモデル • SVM • 重回帰分析 • 決定⽊ • クラスタリング • DeepLearning
事例2: ポートレートモード ぬるさくAIアプリ開発勉強会 8 ⼈⼯知能 = 概念 => ⽬を使わずに物体を判定する 画像認識
⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚 味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 定 量 化 ︵ 化 ︶ 機械学習 ⼈物と背景を判別する 分類モデル • SVM • 重回帰分析 • 決定⽊ • クラスタリング • DeepLearning
機械学習とは、規則性を⾒つけるための⼿法・技術 ぬるさくAIアプリ開発勉強会 9 ⼈⼯知能 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 数 値 機械学習 モデル 数値から規則 性を⾒つける ための⼿法 アプリ ⼈間が持つ学習にあたる仕組みを機械(特にコンピュータ)で実現する技術・⼿法の総称である(Wikipedia)
データ分析とは、データから規則性を⾒つける業務? ぬるさくAIアプリ開発勉強会 10 ⼈⼯知能 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 数 値 機械学習 モデル 数値から規則 性を⾒つける ための⼿法 アプリ データ分析
機械学習とデータ分析 ぬるさくAIアプリ開発勉強会 11 ⼈⼯知能 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 機械学習技術を深く理解するための知識 数 値 機械学習 モデル 数値から規則 性を⾒つける ための⼿法 アプリ データ分析 データサイエンティストの業務範囲? モデリング
機械学習とデータ分析 ぬるさくAIアプリ開発勉強会 12 ⼈⼯知能 画像認識 ⾳声認識 ⾃然⾔語処理 視覚 聴覚 嗅覚
味覚 触覚 ⼈間 五感 ⽬ ⽿ ⼝ 線形代数 微分・積分 確率・統計 数学知識 定量化するための⽅法論 ⼒ 機械学習 モデル 数値から規則 性を⾒つける ための⼿法を 選ぶ アプリ データ分析 モデリング データサイエンス⼒ エンジ ニアリ ング⼒
まとめ ぬるさくAIアプリ開発勉強会 13 • AI(⼈⼯知能)とは何ですか? • 機械学習とは何ですか? • 機械学習とデータ分析の違いは?