Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
応用セッション_同じデータでもP値が変わる話/key_considerations_in_NH...
Search
florets1
January 17, 2024
Education
1
1.1k
応用セッション_同じデータでもP値が変わる話/key_considerations_in_NHST_2
florets1
January 17, 2024
Tweet
Share
More Decks by florets1
See All by florets1
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
6
2.1k
直積は便利/direct_product_is_useful
florets1
3
310
butterfly_effect/butterfly_effect_in-house
florets1
1
130
データハンドリング/data_handling
florets1
2
160
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
230
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
230
お名前から性別を推測する/Guessing_gender_from_name
florets1
1
540
バタフライ効果/butterfly_effect
florets1
0
260
Other Decks in Education
See All in Education
The Prison Industrial Complex by Billy Dee
oripsolob
0
180
Algo de fontes de alimentación
irocho
1
470
Ilman kirjautumista toimivia sovelluksia
matleenalaakso
1
20k
開発終了後こそ成長のチャンス!プロダクト運用を見送った先のアクションプラン
ohmori_yusuke
2
270
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
830
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
2.5k
Adobe Express
matleenalaakso
1
7.6k
自己紹介 / who-am-i
yasulab
PRO
2
4.4k
Medicare 101 for 2025
robinlee
PRO
0
400
Historia dos ordenadores
irocho
0
100
書を持って、自転車で町へ出よう
yuritaco
0
110
Comment aborder et contribuer sereinement à un projet open source ? (Masterclass Université Toulouse III)
pylapp
0
3.3k
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
66
11k
The Language of Interfaces
destraynor
155
24k
Scaling GitHub
holman
459
140k
Adopting Sorbet at Scale
ufuk
74
9.2k
Optimising Largest Contentful Paint
csswizardry
33
3k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
How to Ace a Technical Interview
jacobian
276
23k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Facilitating Awesome Meetings
lara
51
6.2k
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Transcript
1 応用セッション 2024.01.20 Tokyo.R #110 同じデータでもP値が変わる話
2 統計的仮説検定 同じデータからは同じ検定結果が得られるもの と考えられがちですが 実際には必ずしもその通りではありません。
3 例えば コイン投げをして24回中7回が表になったという単純 なデータを考えてみましょう。 このようなデータでも、実験の設定や投げる回数の制 約によって、統計的仮説検定の結果が変わることがあ るのです。
4 コインを1回投げる 𝑝 𝑦 𝜃 = 𝜃𝑦(1 − 𝜃)(1−𝑦) 𝜃
= 0.5 ベルヌーイ分布 θ: 表が出る確率 y: 1 は表, 0 は裏
5 コインをN回投げる 裏裏表表裏裏表裏裏裏裏裏裏裏裏裏表裏裏表表裏裏表 表が出る確率 θ 投げる回数 N 表の回数 z 二項分布
6 統計的仮説検定の流れ 帰無仮説をたてる ↓ 標本分布を計算する ↓ データを観測してP値を求める
7 帰無仮説をたてる ある統計量がある値と等しいということを帰無仮説と して設定します。 例) コインの裏表が出る確率が50%と等しい 平均値が等しい
8 標本分布を計算する 帰無仮説が成り立つ場合にその統計量が従うであろう 確率分布(=標本分布)を計算します。 例) コインの裏表が出る確率 → 二項分布など 平均値 →
t分布など
9 データを観測してP値を求める 実際に観測された値、もしくはそれ以上に極端な値が 標本分布に占める面積、つまりそのような値が観測さ れる確率(P値)を求めます。
10 P値があらかじめ設定したしきい値(たとえば5%)よ りも小さければ、そもそも帰無仮説が間違っていたの だと結論づけます。 逆に小さくなければ帰無仮説を棄却せず、判断を保留 します。 P値で判断
11 コインを24回投げて7回表が出た このコインは公平か。 データ観測者の意図 コインを24回投げると決めていた。結果として7回表 がでた。
12 標本分布 表が出る確率 θ 投げる回数 N 表の回数 z 二項分布
13 データを観測 θ = 0.5 N = 24 z =
7 P値 = 0.064 Sample Proportion z/N p(z/N)
14 Rのコード
15 Pythonのコード
16 コインを24回投げて7回表が出た このコインは公平か。 データ観測者の意図 7回表が出るまで投げ続けると決めていた。結果として 24回投げた。 ↓ 23回投げた時点で6回表が出ており、24回目では表が 出た。
17 標本分布 N-1回投げた時点でz-1回表が出て N回目は表
18 データを観測 θ = 0.5 z = 7 N =
24 P値 = 0.017 Sample Proportion z/N p(z/N)
19 Rのコード
20 Pythonのコード
21 投げる回数N 表が出る回数 z • Nを固定する意図ではP値=0.064(判断を保留) • zを固定する意図ではP値=0.017(帰無仮説を棄却) 同じデータを観測しても、観測者の意図によって 検定結果が変わる!
22 意外にも 観察者の意図やデータ収集の方法が、統計的な結果に 影響を与える可能性があるのです。 このような現象は、統計的な検定の限界や留意すべき 要点を浮き彫りにします。単に数値を見るだけではな く、実験の文脈や条件を正しく理解することの重要性 を示しています。
23 参考書 飯塚修平. ウェブ最適化ではじめる機械学習. オライ リー・ジャパン, 2020 John K. Kruschke.
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan EDITION 2. Academic Press, 2014