Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Deep Learning and Neural Networks.
Search
Bedanta Bikash Borah
July 24, 2018
Education
0
210
Introduction to Deep Learning and Neural Networks.
Bedanta Bikash Borah
July 24, 2018
Tweet
Share
More Decks by Bedanta Bikash Borah
See All by Bedanta Bikash Borah
Thinking beyond platforms with KMP
iambedant
0
6
Let's Stream that Video - an ExoPlayer Starters Guide
iambedant
0
110
A tale of Multiplatform
iambedant
0
89
A Full-Stack app with Kotlin —by an Android Developer
iambedant
2
220
Other Decks in Education
See All in Education
H5P-työkalut
matleenalaakso
4
36k
Introduction - Lecture 1 - Web Technologies (1019888BNR)
signer
PRO
0
4.9k
Algo de fontes de alimentación
irocho
1
440
2409_CompanyInfo_Hanji_published.pdf
yosukemurata
0
630
Unraveling JavaScript Prototypes
debug_mode
0
110
寺沢拓敬 2024. 09. 「言語政策研究と教育政策研究の狭間で英語教育政策を考える」
terasawat
0
220
Chapitre_1_-__L_atmosphère_et_la_vie_-_Partie_1.pdf
bernhardsvt
0
230
Comment aborder et contribuer sereinement à un projet open source ? (Masterclass Université Toulouse III)
pylapp
0
3.2k
勉強する必要ある?
mineo_matsuya
2
2.3k
Ch2_-_Partie_3.pdf
bernhardsvt
0
110
Казармы и гарнизоны
pnuslide
0
140
Web Application Frameworks - Lecture 4 - Web Technologies (1019888BNR)
signer
PRO
0
2.6k
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Music & Morning Musume
bryan
46
6.2k
Docker and Python
trallard
42
3.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Building Better People: How to give real-time feedback that sticks.
wjessup
365
19k
Mobile First: as difficult as doing things right
swwweet
222
9k
YesSQL, Process and Tooling at Scale
rocio
169
14k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
247
1.3M
Faster Mobile Websites
deanohume
305
30k
Transcript
Introduction to Deep Learning and Neural Networks. Bedanta Bikash Borah
@iamBedant
None
None
Agenda 1. What is Deep Learning? 2. Why Deep Learning
is taking off? 3. How Deep Learning works? 4. Training. 5. Example MNIST. 6. Code Sample. 7. Few extra concepts.
Deep Learning The term Deep Learning refers to training very
large Neural Network
What is Neural Network? House Size (X) Price (Y) 500
5 Laks 600 8 Laks 700 9 Laks 800 13 Laks 900 12 Laks 1100 18 Laks 1200 20 Laks
Housing Price Prediction 0 laks 5 laks 10 laks 15
laks 20 laks 000 sq ft 300 sq ft 600 sq ft 900 sq ft 1200 sq ft What is Neural Network?
What is Neural Network? x Y Size of the House
Price of the House Neuron Function F Input Output
What is Neural Network? Size No of bedrooms Locality Society
Y Family Size Walkability School/Market Quality
What is Neural Network? X1 X2 X3 X4 Y Size
No of bedrooms Locality Society
Deep Neural Network
Why DeepLearning taking off? Deep Neural Network Medium Neural Network
Traditional ML Algorithm Data Performance Not well defined
Why DeepLearning taking off? 1. Data 2. Computation 3. Algorithm
How DeepLearning Works? X1 X2 X3 X4 Y
How DeepLearning Works? X1 X2 X3 X4 Y f W1
W2 W3 W4 X1* W1 + X2 * W2 + X3 * W3 +X4 * W4 Z f( )= Relu (x) or Sigmoid(x) *ignoring bias for simplification Z =
How DeepLearning Works?
How DeepLearning Works? X1 X2 X3 X4 Y
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired
Training X1 X2 X3 X4 Y Y’ Random Initialisation
Training 1.Quadratic cost 2.Cross-entropy cost 3.Exponential cost Cost Function:
Training Grad Gradient Descent
Training Learning Rate (alpha)
Training Large Learning rate
Training Learning Rate (alpha)
Training New Weights = Existing Weights Learning Rate - *
Gradient ( )
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Example MNIST
MNIST 60,000 training samples 10,000 test samples
MNIST
MNIST = 28 x 28 = 784
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST **from three blue one brown’s “But, what is a
neural network?” video**
Talk is cheap show me the code.
Advanced MNIST CNN (convolutional neural network)
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: What’s 20 + 10? Me: It’s 19
Advanced MNIST Overfitting (Regularization, Dropout)
Extras
Reference https://github.com/iamBedant/CMRIT-Deeplearning-TechTalk-Demo Simple MNIST Example https://github.com/iamBedant/TensoreFlowLite Android TFLite Example Others:
https://www.tensorflow.org/ https://keras.io/
Thank You !!! @iamBedant