Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Deep Learning and Neural Networks.
Search
Bedanta Bikash Borah
July 24, 2018
Education
0
270
Introduction to Deep Learning and Neural Networks.
Bedanta Bikash Borah
July 24, 2018
Tweet
Share
More Decks by Bedanta Bikash Borah
See All by Bedanta Bikash Borah
Thinking beyond platforms with KMP
iambedant
0
9
Let's Stream that Video - an ExoPlayer Starters Guide
iambedant
0
130
A tale of Multiplatform
iambedant
0
91
A Full-Stack app with Kotlin —by an Android Developer
iambedant
2
240
Other Decks in Education
See All in Education
Презентация "Знаю Россию"
spilsart
0
300
仏教の源流からの奈良県中南和_奈良まほろば館‗飛鳥・藤原DAO/asuka-fujiwara_Saraswati
tkimura12
0
150
[FUN Open Campus 2025] 何でもセンシングしていいですか?
pman0214
0
250
20250830_MIEE祭_会社員視点での学びのヒント
ponponmikankan
1
180
吉岡研究室紹介(2025年度)
kentaroy47
0
490
Node-REDで広がるプログラミング教育の可能性
ueponx
0
160
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
10
1.9k
2024-2025 CBT top items
cbtlibrary
0
130
社外コミュニティの歩き方
masakiokuda
2
210
Transición del Management al Neuromanagement
jvpcubias
0
240
~キャラ付け考えていますか?~ AI時代だからこそ技術者に求められるセルフブランディングのすゝめ
masakiokuda
7
510
H5P-työkalut
matleenalaakso
4
40k
Featured
See All Featured
How GitHub (no longer) Works
holman
315
140k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
YesSQL, Process and Tooling at Scale
rocio
173
15k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Building Applications with DynamoDB
mza
96
6.7k
Visualization
eitanlees
150
16k
Designing for humans not robots
tammielis
254
26k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Transcript
Introduction to Deep Learning and Neural Networks. Bedanta Bikash Borah
@iamBedant
None
None
Agenda 1. What is Deep Learning? 2. Why Deep Learning
is taking off? 3. How Deep Learning works? 4. Training. 5. Example MNIST. 6. Code Sample. 7. Few extra concepts.
Deep Learning The term Deep Learning refers to training very
large Neural Network
What is Neural Network? House Size (X) Price (Y) 500
5 Laks 600 8 Laks 700 9 Laks 800 13 Laks 900 12 Laks 1100 18 Laks 1200 20 Laks
Housing Price Prediction 0 laks 5 laks 10 laks 15
laks 20 laks 000 sq ft 300 sq ft 600 sq ft 900 sq ft 1200 sq ft What is Neural Network?
What is Neural Network? x Y Size of the House
Price of the House Neuron Function F Input Output
What is Neural Network? Size No of bedrooms Locality Society
Y Family Size Walkability School/Market Quality
What is Neural Network? X1 X2 X3 X4 Y Size
No of bedrooms Locality Society
Deep Neural Network
Why DeepLearning taking off? Deep Neural Network Medium Neural Network
Traditional ML Algorithm Data Performance Not well defined
Why DeepLearning taking off? 1. Data 2. Computation 3. Algorithm
How DeepLearning Works? X1 X2 X3 X4 Y
How DeepLearning Works? X1 X2 X3 X4 Y f W1
W2 W3 W4 X1* W1 + X2 * W2 + X3 * W3 +X4 * W4 Z f( )= Relu (x) or Sigmoid(x) *ignoring bias for simplification Z =
How DeepLearning Works?
How DeepLearning Works? X1 X2 X3 X4 Y
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired
Training X1 X2 X3 X4 Y Y’ Random Initialisation
Training 1.Quadratic cost 2.Cross-entropy cost 3.Exponential cost Cost Function:
Training Grad Gradient Descent
Training Learning Rate (alpha)
Training Large Learning rate
Training Learning Rate (alpha)
Training New Weights = Existing Weights Learning Rate - *
Gradient ( )
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Example MNIST
MNIST 60,000 training samples 10,000 test samples
MNIST
MNIST = 28 x 28 = 784
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST **from three blue one brown’s “But, what is a
neural network?” video**
Talk is cheap show me the code.
Advanced MNIST CNN (convolutional neural network)
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: What’s 20 + 10? Me: It’s 19
Advanced MNIST Overfitting (Regularization, Dropout)
Extras
Reference https://github.com/iamBedant/CMRIT-Deeplearning-TechTalk-Demo Simple MNIST Example https://github.com/iamBedant/TensoreFlowLite Android TFLite Example Others:
https://www.tensorflow.org/ https://keras.io/
Thank You !!! @iamBedant