Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Deep Learning and Neural Networks.
Search
Bedanta Bikash Borah
July 24, 2018
Education
0
270
Introduction to Deep Learning and Neural Networks.
Bedanta Bikash Borah
July 24, 2018
Tweet
Share
More Decks by Bedanta Bikash Borah
See All by Bedanta Bikash Borah
Thinking beyond platforms with KMP
iambedant
0
10
Let's Stream that Video - an ExoPlayer Starters Guide
iambedant
0
130
A tale of Multiplatform
iambedant
0
92
A Full-Stack app with Kotlin —by an Android Developer
iambedant
2
240
Other Decks in Education
See All in Education
1111
cbtlibrary
0
240
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
2.7k
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
150
✅ レポート採点基準 / How Your Reports Are Assessed
yasslab
PRO
0
150
1202
cbtlibrary
0
140
子どもが自立した学習者となるデジタルの活用について
naokikato
PRO
0
160
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
3.1k
The knowledge panel is your new homepage
bradwetherall
0
220
国際卓越研究大学計画|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
19k
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
今の私を形作る4つの要素と偶然の出会い(セレンディピティ)
mamohacy
2
130
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Writing Fast Ruby
sferik
630
62k
Side Projects
sachag
455
43k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Context Engineering - Making Every Token Count
addyosmani
9
520
Practical Orchestrator
shlominoach
190
11k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Unsuck your backbone
ammeep
671
58k
Transcript
Introduction to Deep Learning and Neural Networks. Bedanta Bikash Borah
@iamBedant
None
None
Agenda 1. What is Deep Learning? 2. Why Deep Learning
is taking off? 3. How Deep Learning works? 4. Training. 5. Example MNIST. 6. Code Sample. 7. Few extra concepts.
Deep Learning The term Deep Learning refers to training very
large Neural Network
What is Neural Network? House Size (X) Price (Y) 500
5 Laks 600 8 Laks 700 9 Laks 800 13 Laks 900 12 Laks 1100 18 Laks 1200 20 Laks
Housing Price Prediction 0 laks 5 laks 10 laks 15
laks 20 laks 000 sq ft 300 sq ft 600 sq ft 900 sq ft 1200 sq ft What is Neural Network?
What is Neural Network? x Y Size of the House
Price of the House Neuron Function F Input Output
What is Neural Network? Size No of bedrooms Locality Society
Y Family Size Walkability School/Market Quality
What is Neural Network? X1 X2 X3 X4 Y Size
No of bedrooms Locality Society
Deep Neural Network
Why DeepLearning taking off? Deep Neural Network Medium Neural Network
Traditional ML Algorithm Data Performance Not well defined
Why DeepLearning taking off? 1. Data 2. Computation 3. Algorithm
How DeepLearning Works? X1 X2 X3 X4 Y
How DeepLearning Works? X1 X2 X3 X4 Y f W1
W2 W3 W4 X1* W1 + X2 * W2 + X3 * W3 +X4 * W4 Z f( )= Relu (x) or Sigmoid(x) *ignoring bias for simplification Z =
How DeepLearning Works?
How DeepLearning Works? X1 X2 X3 X4 Y
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired
Training X1 X2 X3 X4 Y Y’ Random Initialisation
Training 1.Quadratic cost 2.Cross-entropy cost 3.Exponential cost Cost Function:
Training Grad Gradient Descent
Training Learning Rate (alpha)
Training Large Learning rate
Training Learning Rate (alpha)
Training New Weights = Existing Weights Learning Rate - *
Gradient ( )
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Example MNIST
MNIST 60,000 training samples 10,000 test samples
MNIST
MNIST = 28 x 28 = 784
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST **from three blue one brown’s “But, what is a
neural network?” video**
Talk is cheap show me the code.
Advanced MNIST CNN (convolutional neural network)
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: What’s 20 + 10? Me: It’s 19
Advanced MNIST Overfitting (Regularization, Dropout)
Extras
Reference https://github.com/iamBedant/CMRIT-Deeplearning-TechTalk-Demo Simple MNIST Example https://github.com/iamBedant/TensoreFlowLite Android TFLite Example Others:
https://www.tensorflow.org/ https://keras.io/
Thank You !!! @iamBedant