Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Deep Learning and Neural Networks.
Search
Bedanta Bikash Borah
July 24, 2018
Education
0
200
Introduction to Deep Learning and Neural Networks.
Bedanta Bikash Borah
July 24, 2018
Tweet
Share
More Decks by Bedanta Bikash Borah
See All by Bedanta Bikash Borah
Let's Stream that Video - an ExoPlayer Starters Guide
iambedant
0
100
A tale of Multiplatform
iambedant
0
89
A Full-Stack app with Kotlin —by an Android Developer
iambedant
2
220
Other Decks in Education
See All in Education
データハンドリング/data_handling
florets1
2
140
RSJ2024学術ランチョンセミナー「若手・中堅による国際化リーダーシップに向けて」資料 (河原塚)
haraduka
0
220
Kindleストアで本を探すことの善悪 #Izumo Developers' Guild 第1回 LT大会
totodo713
0
120
Canva
matleenalaakso
0
410
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
2.5k
week@tcue2024
nonxxxizm
0
510
White Snake: Qing's Mission
movingcastal
0
250
1030
cbtlibrary
0
300
MLH Hackcon: Keynote (2024)
theycallmeswift
0
180
The Gender Gap in the Technology Field and Efforts to Address It
codeforeveryone
0
170
Bonum Certamen Certavi, Fidem Servavi - A Vida de Santo Edmundo Campeão e a Defesa da Fé em Tempos de Crise
cm_manaus
0
110
Os pápeis do UX Design
wagnerbeethoven
0
360
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
42
2.2k
RailsConf 2023
tenderlove
29
890
GitHub's CSS Performance
jonrohan
1030
460k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Gamification - CAS2011
davidbonilla
80
5k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Writing Fast Ruby
sferik
627
61k
Transcript
Introduction to Deep Learning and Neural Networks. Bedanta Bikash Borah
@iamBedant
None
None
Agenda 1. What is Deep Learning? 2. Why Deep Learning
is taking off? 3. How Deep Learning works? 4. Training. 5. Example MNIST. 6. Code Sample. 7. Few extra concepts.
Deep Learning The term Deep Learning refers to training very
large Neural Network
What is Neural Network? House Size (X) Price (Y) 500
5 Laks 600 8 Laks 700 9 Laks 800 13 Laks 900 12 Laks 1100 18 Laks 1200 20 Laks
Housing Price Prediction 0 laks 5 laks 10 laks 15
laks 20 laks 000 sq ft 300 sq ft 600 sq ft 900 sq ft 1200 sq ft What is Neural Network?
What is Neural Network? x Y Size of the House
Price of the House Neuron Function F Input Output
What is Neural Network? Size No of bedrooms Locality Society
Y Family Size Walkability School/Market Quality
What is Neural Network? X1 X2 X3 X4 Y Size
No of bedrooms Locality Society
Deep Neural Network
Why DeepLearning taking off? Deep Neural Network Medium Neural Network
Traditional ML Algorithm Data Performance Not well defined
Why DeepLearning taking off? 1. Data 2. Computation 3. Algorithm
How DeepLearning Works? X1 X2 X3 X4 Y
How DeepLearning Works? X1 X2 X3 X4 Y f W1
W2 W3 W4 X1* W1 + X2 * W2 + X3 * W3 +X4 * W4 Z f( )= Relu (x) or Sigmoid(x) *ignoring bias for simplification Z =
How DeepLearning Works?
How DeepLearning Works? X1 X2 X3 X4 Y
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired
Training X1 X2 X3 X4 Y Y’ Random Initialisation
Training 1.Quadratic cost 2.Cross-entropy cost 3.Exponential cost Cost Function:
Training Grad Gradient Descent
Training Learning Rate (alpha)
Training Large Learning rate
Training Learning Rate (alpha)
Training New Weights = Existing Weights Learning Rate - *
Gradient ( )
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Example MNIST
MNIST 60,000 training samples 10,000 test samples
MNIST
MNIST = 28 x 28 = 784
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST **from three blue one brown’s “But, what is a
neural network?” video**
Talk is cheap show me the code.
Advanced MNIST CNN (convolutional neural network)
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: What’s 20 + 10? Me: It’s 19
Advanced MNIST Overfitting (Regularization, Dropout)
Extras
Reference https://github.com/iamBedant/CMRIT-Deeplearning-TechTalk-Demo Simple MNIST Example https://github.com/iamBedant/TensoreFlowLite Android TFLite Example Others:
https://www.tensorflow.org/ https://keras.io/
Thank You !!! @iamBedant