Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Deep Learning and Neural Networks.
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Bedanta Bikash Borah
July 24, 2018
Education
0
280
Introduction to Deep Learning and Neural Networks.
Bedanta Bikash Borah
July 24, 2018
Tweet
Share
More Decks by Bedanta Bikash Borah
See All by Bedanta Bikash Borah
Thinking beyond platforms with KMP
iambedant
0
11
Let's Stream that Video - an ExoPlayer Starters Guide
iambedant
0
130
A tale of Multiplatform
iambedant
0
94
A Full-Stack app with Kotlin —by an Android Developer
iambedant
2
240
Other Decks in Education
See All in Education
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
3.2k
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
1216
cbtlibrary
0
140
栃木県警サイバーセキュリティ研修会2026
nomizone
0
200
【洋書和訳:さよならを待つふたりのために】第1章 出会いとメタファー
yaginumatti
0
250
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
730
2025年度伊藤正彦ゼミ紹介
imash
0
170
AIでキミの未来はどう変わる?
behomazn
0
110
子どもが自立した学習者となるデジタルの活用について
naokikato
PRO
0
190
0121
cbtlibrary
0
130
Linguaxes de programación
irocho
0
530
令和エンジニアの学習法 〜 生成AIを使って挫折を回避する 〜
moriga_yuduru
0
240
Featured
See All Featured
Marketing to machines
jonoalderson
1
4.6k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
The Cult of Friendly URLs
andyhume
79
6.8k
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Transcript
Introduction to Deep Learning and Neural Networks. Bedanta Bikash Borah
@iamBedant
None
None
Agenda 1. What is Deep Learning? 2. Why Deep Learning
is taking off? 3. How Deep Learning works? 4. Training. 5. Example MNIST. 6. Code Sample. 7. Few extra concepts.
Deep Learning The term Deep Learning refers to training very
large Neural Network
What is Neural Network? House Size (X) Price (Y) 500
5 Laks 600 8 Laks 700 9 Laks 800 13 Laks 900 12 Laks 1100 18 Laks 1200 20 Laks
Housing Price Prediction 0 laks 5 laks 10 laks 15
laks 20 laks 000 sq ft 300 sq ft 600 sq ft 900 sq ft 1200 sq ft What is Neural Network?
What is Neural Network? x Y Size of the House
Price of the House Neuron Function F Input Output
What is Neural Network? Size No of bedrooms Locality Society
Y Family Size Walkability School/Market Quality
What is Neural Network? X1 X2 X3 X4 Y Size
No of bedrooms Locality Society
Deep Neural Network
Why DeepLearning taking off? Deep Neural Network Medium Neural Network
Traditional ML Algorithm Data Performance Not well defined
Why DeepLearning taking off? 1. Data 2. Computation 3. Algorithm
How DeepLearning Works? X1 X2 X3 X4 Y
How DeepLearning Works? X1 X2 X3 X4 Y f W1
W2 W3 W4 X1* W1 + X2 * W2 + X3 * W3 +X4 * W4 Z f( )= Relu (x) or Sigmoid(x) *ignoring bias for simplification Z =
How DeepLearning Works?
How DeepLearning Works? X1 X2 X3 X4 Y
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired
Training X1 X2 X3 X4 Y Y’ Random Initialisation
Training 1.Quadratic cost 2.Cross-entropy cost 3.Exponential cost Cost Function:
Training Grad Gradient Descent
Training Learning Rate (alpha)
Training Large Learning rate
Training Learning Rate (alpha)
Training New Weights = Existing Weights Learning Rate - *
Gradient ( )
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Example MNIST
MNIST 60,000 training samples 10,000 test samples
MNIST
MNIST = 28 x 28 = 784
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST Softmax Image Vector Neural Network Layers
MNIST **from three blue one brown’s “But, what is a
neural network?” video**
Talk is cheap show me the code.
Advanced MNIST CNN (convolutional neural network)
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: You’re hired.
Interviewer: What is your biggest strength? Me: I am an
expert in machine learning. Interviewer: What’s 9 + 10? Me: It’s 3. Interviewer: Nowhere near. It’s 19. Me: It’s 16. Interviewer: Wrong. It’s still 19 Me: It’s 18. Interviewer: No. It’s 19 Me: It’s 19. Interviewer: What’s 20 + 10? Me: It’s 19
Advanced MNIST Overfitting (Regularization, Dropout)
Extras
Reference https://github.com/iamBedant/CMRIT-Deeplearning-TechTalk-Demo Simple MNIST Example https://github.com/iamBedant/TensoreFlowLite Android TFLite Example Others:
https://www.tensorflow.org/ https://keras.io/
Thank You !!! @iamBedant