Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第17回 雲勉LT【オンライン】Amazon Managed Grafanaを使ってCloud...
Search
iret.kumoben
March 26, 2024
Technology
0
250
第17回 雲勉LT【オンライン】Amazon Managed Grafanaを使ってCloudWatchログを分析・可視化する
下記、勉強会での資料です。
https://youtu.be/9lZp-eWf1L4
iret.kumoben
March 26, 2024
Tweet
Share
More Decks by iret.kumoben
See All by iret.kumoben
第181回 雲勉 WEB制作者のちょっとした面倒をAWSで解決!Amazon S3とAWS Lambda活用術
iret
0
37
第180回 雲勉 Abuse report の調査・確認方法について
iret
0
59
第179回 雲勉 AI を活用したサポートデスク業務の改善
iret
0
83
第178回 雲勉 Amazon EKSをオンプレで! Amazon EKS Anywhere 実践構築ガイド
iret
1
61
第177回 雲勉 IdP 移行を楽に!Amazon Cognito でアプリへの影響をゼロにするアイデア
iret
0
65
第176回 雲勉 VPC 間サービス接続を考える!Private Service Connect 入門
iret
0
53
第175回 雲勉 Amazon ECS入門:コンテナ実行の基本を学ぶ
iret
0
85
第174回 雲勉 Google Agentspace × ADK Vertex AI Agent Engineにデプロイしたエージェントを呼び出す
iret
0
130
第173回 雲勉 ノーコードで生成 AI アプリを構築!Google Cloud AI Applications(旧 Vertex AI Agent Builder)入門
iret
0
100
Other Decks in Technology
See All in Technology
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
歴史から学ぶ、Goのメモリ管理基礎
logica0419
10
1.9k
Cloud WAN MCP Serverから考える新しいネットワーク運用 / 20251228 Masaki Okuda
shift_evolve
PRO
0
130
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
670
Eight Engineering Unit 紹介資料
sansan33
PRO
0
6.1k
「アウトプット脳からユーザー価値脳へ」がそんなに簡単にできたら苦労しない #RSGT2026
aki_iinuma
6
3.4k
20251225_たのしい出張報告&IgniteRecap!
ponponmikankan
0
110
プロンプトエンジニアリングを超えて:自由と統制のあいだでつくる Platform × Context Engineering
yuriemori
0
140
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
120
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
5
660
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
290
Oracle Cloud Infrastructure:2025年12月度サービス・アップデート
oracle4engineer
PRO
0
180
Featured
See All Featured
Bash Introduction
62gerente
615
210k
RailsConf 2023
tenderlove
30
1.3k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
It's Worth the Effort
3n
187
29k
Designing Experiences People Love
moore
143
24k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
100k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
220
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
330
So, you think you're a good person
axbom
PRO
0
1.9k
Transcript
第17回 雲勉LT【オンライン】 Amazon Managed Grafanaを使って CloudWatchログを分析・可視化する
0.講師⾃⼰紹介 2 n 名前 上地航平(うえち こうへい) • (所属)クラウドインテグレーション事業部 MSP開発セクション •
(経歴) MSP運⽤→MSP開発 • (アイレット歴) 3年⽬ • (何か⼀⾔) 好きなAWSサービス︓Amazon Managed Grafana
アジェンダ 3 1. CloudWatchログを分析・可視化する⽅法 2. CloudWatch Logsインサイトクエリを使った⽅法 3. 事前にカスタムメトリクスを⽣成する⽅法 4.
カスタムメトリクスを採⽤する時の注意点 5. まとめ Amazon Managed Grafanaを使ってCloudWatchログを分析・可視化する
4 ▪まえがき 前回は「Amazon Managed Grafanaダッシュボードを⼀緒に構築しましょう」というテーマでお話させて頂きました。 そこではサンプルとして、CloudWatchメトリクスを可視化したりしました。 ▪本⽇のゴール 今回は構築したダッシュボード上にCloudWatchログを分析して可視化する⽅法についてお話したいと思っています。 以下2点を理解できる内容となっています。 •
CloudWatchログを分析・可視化する⽅法 • カスタムメトリクスを採⽤する際の注意点 ▪本⽇話さない内容 • Amazon Managed Grafanaダッシュボードの初期構築⼿順 過去の雲勉で解説させて頂いておりますので、ぜひご参照ください。 ◯ https://www.youtube.com/watch?v=yo56gGH_o90 1. 本⽇のゴール
1. CloudWatchログを分析・可視化す る⽅法 5
1. CloudWatchログを分析・可視化する⽅法 6 ▼Amazon Managed Grafanaで、CloudWatchログを可視化するにはどうすれば良いのでしょうか︖ ⼤きく2つの⽅法があります。 1. CloudWatch Logsインサイトクエリ(後述、インサイトクエリ)を使った⽅法。
2. 事前にカスタムメトリクスを⽣成する⽅法。 詳しく⾒ていきましょう。
2-1. CloudWatch Logsインサイトクエリを 使った⽅法 7
2-1. CloudWatch Logsインサイトクエリを使った⽅法 8 ▼有⽤なシナリオ 「複雑な条件指定によるフィルタリングや集計を⾏いたい。」 デメリットととして、扱うログのデータ量が多くなるとインサイトクエリで取得するまで実⾏に時間がかかったりしま す。 例︓1年分のログデータからフィルタ、集計する。 ▼可視化の⽅法
Amazon Managed Grafanaダッシュボードのパネルでは、インサイトクエリを設定できます。 このパネルは更新されたタイミングで、インサイトクエリを実⾏し最新データをダッシュボードに反映します。 実装⼿順
2-1. CloudWatch Logsインサイトクエリを使った⽅法 9 ⼿順 ①Amazon Managed Grafanaワークスペースにログインする。 ダッシュボード内の右上アイコンをクリックし、表⽰された「Add a
new panel」をクリックします。 パネル作成の詳細画⾯へ遷移する。 ②詳細画⾯で、対象のデータセットを選択します。 ③「CloudWatch Logs」を選択し、さらに「Select Log Group」をクリックする。対象ロググループを検索し選択します。 1 2 3 3
2-1. CloudWatch Logsインサイトクエリを使った⽅法 10 ④インサイトクエリを記述する。 ⑤「Run Query」をクリックすると、クエリ結果がパネルに表⽰されます。 →対象CWAログデータからフィルタしたり、集計したり様々な表⽰形式で可視化できます。 4 5
2-2. 事前にカスタムメトリクスを⽣成する⽅法 11
2-2. 事前にカスタムメトリクスを⽣成する⽅法 12 ▼有⽤なシナリオ 「特定のログデータの出現頻度を可視化したい。」 インサイトクエリと⽐較すると、⻑期間においてログデータ出現頻度を低コストで可視化できます。 ▼可視化の⽅法 CloudWatch Logsのメトリクスフィルターを使⽤して、カスタムメトリクスを事前に⽣成します。 Amazon
Managed Grafanaでは、カスタムメトリクスをデータソースとして可視化します。 2023-04-25T10:15:32.456Z [INFO] UserService - xxx 2023-04-25T10:16:01.789Z [WARN] PaymentGateway - xxx 2023-04-25T10:16:05.123Z [ERROR] DatabaseConnection - xxx 2023-04-25T10:17:10.789Z [WARN] InventoryManager - xxx 2023-04-25T10:18:30.456Z [INFO] ProductRecommendation -xxx このログの出現頻度だけを可視化したい など、低コストで実現できます。
2-2. 事前にカスタムメトリクスを⽣成する⽅法 13 ⼿順 ①AWSアカウントにログイン後、「CloudWatch」サービス画⾯に遷移する。 ②「対象ロググループ」をクリックし詳細画⾯へ遷移する。 ③アクションタブの中から「メトリクスフィルターを作成」をクリックする。 ④メトリクスフィルター作成画⾯では、フィルターパターンを⼊⼒する。 (1つのメトリクスフィルターにつき、1つのフィルターパターンを定義できます。) 1
2 3 4
2-2. 事前にカスタムメトリクスを⽣成する⽅法 14 ⑤⾚枠の箇所には作成したいリソース名で作成する。 ※「メトリクス名前空間」と「メトリクス名」は、Amazon Managed Grafanaパネルの作成で使⽤するので控えます。 5 5
2-2. 事前にカスタムメトリクスを⽣成する⽅法 15 ⑥「すべてのメトリクス」をクリックする。 ⑦ ⑤の⼿順で命名した「メトリクス名前空間」が存在している事。またカスタムメトリクスが発⽣している事を確認する。 6 7
2-2. 事前にカスタムメトリクスを⽣成する⽅法 16 <Amazon Managed Grafanaの操作に移ります(パネル作成⽅法はp.11と同様のため割愛します。)> ⑧ 「CloudWatch Metrics」と「Metric Search」を選択する。
⑨「Namespace」と「Metric name」は、メトリクスフィルター作成⼿順で⼊⼒した「メトリクス名前空間」、「メトリク ス名」とする。 ⑩「Run Query」をクリックし、カスタムメトリクスが確認できればOK。 8 9 8 10
3. カスタムメトリクスを採⽤する時の注意点 17
3. カスタムメトリクスを採⽤する時の注意点 18 CloudWatchの標準メトリクスとカスタムメトリクスは、次のように抽象化されます。 • 1⽇〜14⽇まで 1分間隔で集約されます。 • 15⽇~62⽇まで 5分間隔で集約されます。
• 63⽇~454⽇まで 1時間間隔で集約されます。 • 455⽇以降 1⽇間隔で集約されます。 タイムスタンプ 値 01:00 1 01:01 2 01:03 3 01:04 4 01:05 5 例︓メトリクス発⽣タイミング データポイントの統計情報 値 合計 15 平均 15 最⼩ 15 最⼤ 15 データポイントの統計情報 値 合計 15 平均 3 最⼩ 1 最⼤ 5 “15”に集約される 1⽇~14⽇まで 15⽇~62⽇まで
4. まとめ 19
4. まとめ 20 ▶ CWAログのデータを、Amazon Managed Grafanaで可視化する⽅法は2つあります。 ①インサイトクエリを使った⽅法。 ↳柔軟にフィルタリングでき集計が可能です。 しかし⻑期間のデータを扱う場合、⽐例してクエリスキャン量や実⾏時間なども多くなりますので注意が必要で
す。 ②事前にカスタムメトリクスを⽣成する⽅法。 ↳⻑期間の可視化したいログデータが特定できている場合などのシチュエーションに最適です。低コストで実装 可能です。しかし以下のメトリクス要件に注意が必要です。 ▶ カスタムメトリクスを採⽤する際は、データポイントの抽象化が許容できるか要件を確認しましょう。
動画URL 21 n 動画タイトル 第17回 雲勉LT Amazon Managed Grafanaを使ってCloudWatchログを分析・可視化する n
動画URL https://youtu.be/9lZp-eWf1L4
22 ご清聴頂きありがとうございました。