q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1957 1977 1997 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 30 40 50 60 70 80 GDP per capita Life expectancy pop q q q q 300,000,000 600,000,000 900,000,000 1,200,000,000 continent q q q q q Africa Americas Asia Europe Oceania Health and wealth of countries over time ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp, size = pop, color = continent)) + geom_point() + scale_x_log10() + scale_size_area(label = comma) + labs(x = ’GDP per capita’, y = ’Life expectancy’, title = ’Health and wealth of countries over time’) facet_wrap(~ year) Jake Hofman (Columbia University) Data visualization February 15, 2019 19 / 21