$30 off During Our Annual Pro Sale. View Details »

Semiconductors with ultra-low thermal conductivity: What can we learn from modelling?

Semiconductors with ultra-low thermal conductivity: What can we learn from modelling?

Presented at a Royal Society of Chemistry Solid-State Chemistry Group (SSCG) webinar.

Jonathan Skelton

August 28, 2020
Tweet

More Decks by Jonathan Skelton

Other Decks in Science

Transcript

  1. Dr Jonathan Skelton Department of Chemistry, University of Manchester (jonathan.skelton@manchester.ac.uk)

    Semiconductors with ultra-low thermal conductivity: What can we learn from modelling?
  2. The global energy challenge RSC SSCG, 28th August 2020 |

    Slide 2 34 % 26 % 19 % 18 % 3 % 1000 MW nuclear power plant: o 650 MW waste heat o 3 % ≈ 20 MW ≈ 50,000 homes 300-500 W from exhaust gases: o 2 % lower fuel consumption o 2.4 Mt reduction in CO2 Thermoelectric generators allow waste heat to be recovered as electricity TEGs with ~3 % energy recovery ( = 1) are considered industrially viable 1. Provisional UK greenhouse gas emissions national statistics (published June 2020) 2. EPSRC Thermoelectric Network Roadmap (2018) Dr Jonathan Skelton
  3. Thermoelectric materials Dr Jonathan Skelton = 2 ele + lat

    - Seebeck coefficient - electrical conductivity lat - lattice thermal conductivity ele - electronic thermal conductivity G. Tan et al., Chem. Rev. 116 (19), 12123 (2016) RSC SSCG, 28th August 2020 | Slide 3
  4. Lattice thermal conductivity Phonons are generated at the hot side

    of the material and transport energy to the cold side Dr Jonathan Skelton RSC SSCG, 28th August 2020 | Slide 4
  5. Modelling thermal conductivity A. Togo et al., Phys. Rev. B

    91, 094306 (2015) latt () = 1 0 ෍ () ⊗ () Dr Jonathan Skelton The simplest model for latt is the relaxation time approximation (RTA) - a closed solution to the phonon Boltzmann transport equations Modal heat capacity Mode group velocity λ Average over phonon modes λ Phonon MFP Mode lifetime λ = 1 2Γλ = RSC SSCG, 28th August 2020 | Slide 5
  6. Modelling thermal conductivity Dr Jonathan Skelton RSC SSCG, 28th August

    2020 | Slide 6
  7. How good is the RTA model? Dr Jonathan Skelton RSC

    SSCG, 28th August 2020 | Slide 7 A. Togo et al., Phys. Rev. B 91, 094306 (2015)
  8. The heat capacity Dr Jonathan Skelton RSC SSCG, 28th August

    2020 | Slide 8 = B ℎ B 2 exp Τ ℎ B exp Τ ℎ B − 1 2
  9. The group velocity Dr Jonathan Skelton RSC SSCG, 28th August

    2020 | Slide 9 λ λ λ PbS PbSe PbTe J. M. Skelton et al., Phys. Rev. B 89, 205203 (2014)
  10. The phonon lifetime Γ = ෍ ′′′ Φ−′′′ 2 ×

    { ′ + ′′ + 1 − ′ − ′′ + ′ − ′′ + ′ − ′′ − − ′ + ′′ } Decay Collision Three-phonon interaction strength (includes conservation of momentum) Conservation of energy Dr Jonathan Skelton RSC SSCG, 28th August 2020 | Slide 10 A. Togo et al., Phys. Rev. B 91, 094306 (2015)
  11. Anharmonic materials Dr Jonathan Skelton RSC SSCG, 28th August 2020

    | Slide 11
  12. Anharmonic Materials I: MAPbI3 Dr Jonathan Skelton RSC SSCG, 28th

    August 2020 | Slide 12 Inorganic perovskite: SrTiO3 Hybrid perovskite: MAPbI3
  13. Anharmonic materials 1: MAPbI3 Dr Jonathan Skelton RSC SSCG, 28th

    August 2020 | Slide 13 A. Gold-Parker et al., PNAS 115 (47), 11905 (2018) GaAs MAPbI3
  14. Anharmonic materials 1: MAPbI3 Dr Jonathan Skelton RSC SSCG, 28th

    August 2020 | Slide 14 A. Gold-Parker et al., PNAS 115 (47), 11905 (2018) GaAs MAPbI3 = 1 3 2 ෍ ′′′ Φ′′′ 2
  15. Anharmonic materials 1: MAPbI3 A. Gold-Parker et al., PNAS 115

    (47), 11905 (2018) Dr Jonathan Skelton RSC SSCG, 28th August 2020 | Slide 15
  16. Anharmonic materials 1: MAPbI3 A. Gold-Parker et al., PNAS 115

    (47), 11905 (2018) Dr Jonathan Skelton RSC SSCG, 28th August 2020 | Slide 16
  17. Anharmonic materials 1: MAPbI3 Dr Jonathan Skelton RSC SSCG, 28th

    August 2020 | Slide 17 A. Gold-Parker et al., PNAS 115 (47), 11905 (2018)
  18. Anharmonic materials 2: Bi2 Sn2 O7 Dr Jonathan Skelton RSC

    SSCG, 28th August 2020 | Slide 18 Rahim et al., Chem. Sci. 11, 7904 (2020) -Bi2 Sn2 O7 Pyrochlore (ത 3) - > 900 K -Bi2 Sn2 O7 Distorted () - < 390 K
  19. Anharmonic materials 2: Bi2 Sn2 O7 Rahim et al., J.

    Mater. Chem. A 8, 16405 (2020) Dr Jonathan Skelton RSC SSCG, 28th August 2020 | Slide 19 GaAs Bi2 Sn2 O7
  20. Anharmonic materials 2: Bi2 Sn2 O7 Dr Jonathan Skelton RSC

    SSCG, 28th August 2020 | Slide 20 Collision Decay Rahim et al., J. Mater. Chem. A 8, 16405 (2020) ෨ Γ = 18 ħ2 2 , = 18 ħ2 2 (1) , + 2 (2) ,
  21. Summary Dr Jonathan Skelton The RTA models latt as a

    sum of contributions from individual phonon modes dependent on: (1) the heat capacity ; (2) the group velocity ; and (3) the linewidth/lifetime Γ / The vary slowly with frequency and are likely the least interesting target for controlling latt is related to the chemical bond strength and atomic mass - are reduced with heavy atoms and weak chemical bonding The linewidth/lifetime has two components: 1. The ph-ph interaction strength - 2. The shape of the phonon frequency spectrum - 2 , In the hybrid perovskite MAPbI3 , the motion of the A-site MA cation is very strongly coupled to the PbI3 cage and acts as a scattering centre In the ternary oxide Bi2 Sn2 O7 , structural distortions induced by the active Sn lone pair spread out the phonon spectrum and allow for a high density of energy-conserving scattering events RSC SSCG, 28th August 2020 | Slide 21
  22. Acknowledgements Dr Jonathan Skelton RSC SSCG, 28th August 2020 |

    Slide 22
  23. https://bit.ly/3lilEON These slides are available on Speaker Deck: