$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ハイパースレッディングの 並列化効率への影響 / Hyper Threading
Search
kaityo256
PRO
May 23, 2013
Programming
1
1.5k
ハイパースレッディングの 並列化効率への影響 / Hyper Threading
2011年6月に物性研スパコンでハイパースレッディングが性能に与える影響について調べた実験結果。2013年にSlideShareにアップロードしたものをこちらにサルベージ。
kaityo256
PRO
May 23, 2013
Tweet
Share
More Decks by kaityo256
See All by kaityo256
卒論の書き方 / Happy Writing
kaityo256
PRO
51
27k
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
11
6.7k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
10
1.6k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
10
3.7k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
7
700
論文紹介のやり方 / How to review
kaityo256
PRO
17
89k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
18
1.8k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
680
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
16
5.5k
Other Decks in Programming
See All in Programming
Graviton と Nitro と私
maroon1st
0
130
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
170
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
150
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.3k
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
350
バックエンドエンジニアによる Amebaブログ K8s 基盤への CronJobの導入・運用経験
sunabig
0
170
チームをチームにするEM
hitode909
0
370
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
410
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
3
1.1k
まだ間に合う!Claude Code元年をふりかえる
nogu66
5
890
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
960
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Prompt Engineering for Job Search
mfonobong
0
120
RailsConf 2023
tenderlove
30
1.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
WCS-LA-2024
lcolladotor
0
390
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
0
950
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
Transcript
1/13 ハイパースレッディングの 並列化効率への影響 東京大学物性研究所 渡辺宙志 2013年5月23日:初出 2022年6月24日:再アップロード
2/13 400万粒子/ノードに固定し、ノード数を増やすウィークスケーリング 1000ステップ計算するのにかかった時間をプロット @物性研 SGI Altix ICE 8400EX 観測事実 (1/2)
オーバーヘッド
3/13 観測事実 (2/2) (1) 粒度が疎、つまり計算時間に比して通信時間が相当 短いはずなのに、ウィークスケーリングで高並列時に 性能が劣化する (2) 力の計算時間を測定してみると、通信を含まないは ずなのにプロセスごとに時間がばらついている
(3) 時間のばらつきはプロセス数を増やすと大きくなり、 全体同期により性能劣化を招いている (4) まったく同じ計算をしても、遅いプロセスは毎回異なる システムノイズ(OSジッタ)だろうか? しかしOSジッタにしては影響が大きすぎる
4/13 調べたいこと (1) プロセスの実行時間の揺らぎを精密に調べる (2) ハイパースレッディング(HT) の並列性能への影響を 調べる
5/13 HTなし HTあり HTなしでは、物理コアひとつにMPIプロセス一つをバインドする。 HTありでは、物理コアが二つの論理コアになるが、 物理コア一つにMPIプロセスを一つバインド。 計算条件 (1/2) HTの有無以外の計算条件は変えない
6/13 計算条件 (2/2) 東京大学物性研究所 システムB SGI Altix ICE 8400EX CPU:
Intel Xeon X5570 2.93GHz 4コア/CPU、2CPU/ノード 計算資源: 計算条件: カットオフ2.5σのLennard-Jones粒子系 時間ステップ 0.001、数密度: 0.5 粒子数: 50万粒子/コア、 400万粒子/ノード Flat-MPIによる領域分割 計算コード:http://mdacp.sourceforge.net/ 測定日:2011年6月 ※ HT無効の計算は1ノードから1024ノードまで数点を、 HTを有効にした計算は、1024ノード、8192コアの一点のみを計算
7/13 粒子をメッシュに登録 隣接粒子リストを作成 力の計算 位置と速度を更新 リストはまだ有効か? No Yes 領域からはみ出した粒子の処理 粒子の位置情報を更新
MPI_Sendrecv MPI_Sendrecv MPI_Allreduce 計算アルゴリズム ※通信は全てブロッキング通信
8/13 粒子をメッシュに登録 隣接粒子リストを作成 力の計算 位置と速度を更新 リストはまだ有効か? No Yes 領域からはみ出した粒子の処理 粒子の位置情報を更新
測定する場所 計算全体: このループを 1000ステップ積算 力の計算: ここだけをステップごと、 プロセスごとに計測 ※計算全体は並列化効率の定義のため、力の計算は揺らぎの測定のために調べる
9/13 Hyper-Threadingの影響 HTを有効にするだけで並列化効率が 大きく改善(66%→90%)
10/13 あるステップにおける、プロセスごとの「力の計算」に かかった時間の累積確率分布 ほとんどのプロセスの揺らぎはガウス分布に従うが、飛び抜けて遅い連中がいる → システムからのノイズ? 計算時間の揺らぎ (1/3)
11/13 誤差関数でフィットしてみる 特徴的な時間「τ」 ガウス分布の標準偏差に相当 HTなし:平均時間 143.785 [ms] 標準偏差 0.29 [ms]
HTあり:平均時間 143.940 [ms] 標準偏差 0.36 [ms] 一番遅かったプロセス: HTなし: 221.543 [ms] HTあり: 164.009 [ms] 平均からのずれが256σ 統計情報からはHTなしの方が優れている(平均も揺らぎも小さい)が・・・ 一番遅いプロセスの実行時間がHTにより大きく改善された 計算時間の揺らぎ (2/3)
12/13 計算時間の揺らぎ (3/3) 各ステップでもっとも計算が遅かったランク番号 (HTあり) ロードインバランスのせいではない (同じペアリストを使い回す間は粒子ペア 数が固定であるにも関わらず、毎ステップ一番遅いプロセスが違うから) 何か構造がありそう。ラウンドロビンで何かやってる?
13/13 まとめのようなもの (1) Hyper-Threading Technologyを有効にすることで 並列化効率が大きく向上→HTによるスムーズなス レッドの切り替えが要因? (2) 揺らぐ時間は80ミリ秒といったオーダー →
OSジッタとしては大きすぎる (3) 通信を含まないはずの領域を測定しているのに、計 算時間が大きく揺らぐ →通信の後処理が割り込んでいる?