Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ハイパースレッディングの 並列化効率への影響 / Hyper Threading
Search
kaityo256
PRO
May 23, 2013
Programming
1
1.5k
ハイパースレッディングの 並列化効率への影響 / Hyper Threading
2011年6月に物性研スパコンでハイパースレッディングが性能に与える影響について調べた実験結果。2013年にSlideShareにアップロードしたものをこちらにサルベージ。
kaityo256
PRO
May 23, 2013
Tweet
Share
More Decks by kaityo256
See All by kaityo256
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
10
1.7k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
9
1.5k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
7
2.8k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
6
610
論文紹介のやり方 / How to review
kaityo256
PRO
17
87k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
16
1.7k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
620
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
5.4k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
4
1.4k
Other Decks in Programming
See All in Programming
Devoxx BE 2025 Loom lab
josepaumard
0
110
overlayPreferenceValue で実現する ピュア SwiftUI な AdMob ネイティブ広告
uhucream
0
200
Range on Rails ―「多重範囲型」という新たな選択肢が、複雑ロジックを劇的にシンプルにしたワケ
rizap_tech
0
6.7k
Pythonに漸進的に型をつける
nealle
1
100
SwiftDataを使って10万件のデータを読み書きする
akidon0000
0
230
チームの境界をブチ抜いていけ
tokai235
0
210
Android16 Migration Stories ~Building a Pattern for Android OS upgrades~
reoandroider
0
130
kiroとCodexで最高のSpec駆動開発を!!数時間で web3ネイティブなミニゲームを作ってみたよ!
mashharuki
0
820
ALL CODE BASE ARE BELONG TO STUDY
uzulla
26
6.6k
テーブル定義書の構造化抽出して、生成AIでDWH分析を試してみた / devio2025tokyo
kasacchiful
0
250
Cursorハンズオン実践!
eltociear
2
1.2k
『毎日の移動』を支えるGoバックエンド内製開発
yutautsugi
2
270
Featured
See All Featured
It's Worth the Effort
3n
187
28k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Faster Mobile Websites
deanohume
310
31k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Visualization
eitanlees
149
16k
Scaling GitHub
holman
463
140k
The Language of Interfaces
destraynor
162
25k
Designing for humans not robots
tammielis
254
26k
For a Future-Friendly Web
brad_frost
180
10k
Balancing Empowerment & Direction
lara
5
700
A Tale of Four Properties
chriscoyier
161
23k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Transcript
1/13 ハイパースレッディングの 並列化効率への影響 東京大学物性研究所 渡辺宙志 2013年5月23日:初出 2022年6月24日:再アップロード
2/13 400万粒子/ノードに固定し、ノード数を増やすウィークスケーリング 1000ステップ計算するのにかかった時間をプロット @物性研 SGI Altix ICE 8400EX 観測事実 (1/2)
オーバーヘッド
3/13 観測事実 (2/2) (1) 粒度が疎、つまり計算時間に比して通信時間が相当 短いはずなのに、ウィークスケーリングで高並列時に 性能が劣化する (2) 力の計算時間を測定してみると、通信を含まないは ずなのにプロセスごとに時間がばらついている
(3) 時間のばらつきはプロセス数を増やすと大きくなり、 全体同期により性能劣化を招いている (4) まったく同じ計算をしても、遅いプロセスは毎回異なる システムノイズ(OSジッタ)だろうか? しかしOSジッタにしては影響が大きすぎる
4/13 調べたいこと (1) プロセスの実行時間の揺らぎを精密に調べる (2) ハイパースレッディング(HT) の並列性能への影響を 調べる
5/13 HTなし HTあり HTなしでは、物理コアひとつにMPIプロセス一つをバインドする。 HTありでは、物理コアが二つの論理コアになるが、 物理コア一つにMPIプロセスを一つバインド。 計算条件 (1/2) HTの有無以外の計算条件は変えない
6/13 計算条件 (2/2) 東京大学物性研究所 システムB SGI Altix ICE 8400EX CPU:
Intel Xeon X5570 2.93GHz 4コア/CPU、2CPU/ノード 計算資源: 計算条件: カットオフ2.5σのLennard-Jones粒子系 時間ステップ 0.001、数密度: 0.5 粒子数: 50万粒子/コア、 400万粒子/ノード Flat-MPIによる領域分割 計算コード:http://mdacp.sourceforge.net/ 測定日:2011年6月 ※ HT無効の計算は1ノードから1024ノードまで数点を、 HTを有効にした計算は、1024ノード、8192コアの一点のみを計算
7/13 粒子をメッシュに登録 隣接粒子リストを作成 力の計算 位置と速度を更新 リストはまだ有効か? No Yes 領域からはみ出した粒子の処理 粒子の位置情報を更新
MPI_Sendrecv MPI_Sendrecv MPI_Allreduce 計算アルゴリズム ※通信は全てブロッキング通信
8/13 粒子をメッシュに登録 隣接粒子リストを作成 力の計算 位置と速度を更新 リストはまだ有効か? No Yes 領域からはみ出した粒子の処理 粒子の位置情報を更新
測定する場所 計算全体: このループを 1000ステップ積算 力の計算: ここだけをステップごと、 プロセスごとに計測 ※計算全体は並列化効率の定義のため、力の計算は揺らぎの測定のために調べる
9/13 Hyper-Threadingの影響 HTを有効にするだけで並列化効率が 大きく改善(66%→90%)
10/13 あるステップにおける、プロセスごとの「力の計算」に かかった時間の累積確率分布 ほとんどのプロセスの揺らぎはガウス分布に従うが、飛び抜けて遅い連中がいる → システムからのノイズ? 計算時間の揺らぎ (1/3)
11/13 誤差関数でフィットしてみる 特徴的な時間「τ」 ガウス分布の標準偏差に相当 HTなし:平均時間 143.785 [ms] 標準偏差 0.29 [ms]
HTあり:平均時間 143.940 [ms] 標準偏差 0.36 [ms] 一番遅かったプロセス: HTなし: 221.543 [ms] HTあり: 164.009 [ms] 平均からのずれが256σ 統計情報からはHTなしの方が優れている(平均も揺らぎも小さい)が・・・ 一番遅いプロセスの実行時間がHTにより大きく改善された 計算時間の揺らぎ (2/3)
12/13 計算時間の揺らぎ (3/3) 各ステップでもっとも計算が遅かったランク番号 (HTあり) ロードインバランスのせいではない (同じペアリストを使い回す間は粒子ペア 数が固定であるにも関わらず、毎ステップ一番遅いプロセスが違うから) 何か構造がありそう。ラウンドロビンで何かやってる?
13/13 まとめのようなもの (1) Hyper-Threading Technologyを有効にすることで 並列化効率が大きく向上→HTによるスムーズなス レッドの切り替えが要因? (2) 揺らぐ時間は80ミリ秒といったオーダー →
OSジッタとしては大きすぎる (3) 通信を含まないはずの領域を測定しているのに、計 算時間が大きく揺らぐ →通信の後処理が割り込んでいる?