Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
テキストマイニング
Search
katsutan
March 09, 2017
Technology
0
120
テキストマイニング
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表7
katsutan
March 09, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
210
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
190
Simple task-specific bilingual word embeddings
katsutan
0
200
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
240
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
190
Improving Word Embeddings Using Kernel PCA
katsutan
0
210
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
300
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
280
Other Decks in Technology
See All in Technology
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
18k
AI エージェントと考え直すデータ基盤
na0
20
7.9k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
39k
ソフトウェアQAがハードウェアの人になったの
mineo_matsuya
3
200
「Chatwork」のEKS環境を支えるhelmfileを使用したマニフェスト管理術
hanayo04
1
400
QuickSight SPICE の効果的な運用戦略~S3 + Athena 構成での実践ノウハウ~/quicksight-spice-s3-athena-best-practices
emiki
0
290
Delegating the chores of authenticating users to Keycloak
ahus1
0
190
モニタリング統一への道のり - 分散モニタリングツール統合のためのオブザーバビリティプロジェクト
niftycorp
PRO
1
520
ClaudeCodeにキレない技術
gtnao
1
860
Figma Dev Mode MCP Serverを用いたUI開発
zoothezoo
0
230
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.2k
今だから言えるセキュリティLT_Wordpress5.7.2未満を一斉アップデートせよ
cuebic9bic
2
170
Featured
See All Featured
KATA
mclloyd
30
14k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Speed Design
sergeychernyshev
32
1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Building Applications with DynamoDB
mza
95
6.5k
Embracing the Ebb and Flow
colly
86
4.8k
Making Projects Easy
brettharned
116
6.3k
Practical Orchestrator
shlominoach
189
11k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Transcript
テキストマイニング 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/3/10
テキストマイニングとは • テキストの中の言葉どうしに見られるパターン や規則性を見つけ、知識・情報を取り出す。 ▫ 形態素の出現頻度、あるかないか。 ▫ 出現パターンや相関関係を分析 • 言葉どうしの共通性、類似性
2
分析の流れ 3 ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・
・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ カテゴリー カテゴリー カテゴリー 概念 概念 概念
分析の流れ • 「複数の事物や事象から共通の特徴を取り出し、それら を包括的、概括的に捉える思考の構成単位」 • 研究者の解釈が含まれると再現性がなくなる。 • 厳密なルールが必要 4 概念
概念 概念
多変量解析 • 多くの変数、データを解析 5 国語 算数 理科 社会 英語 Aさん
55 70 85 48 57 Bさん 65 60 59 55 72 Cさん 72 55 74 63 85 平均 64.0 61.7 72.7 55.3 71.3
多変量解析 • 相関関数 = ( − )( − ) (
− )2 ( − )2 6
多変量解析 • 相関関数 = ( − )( − ) (
− )2 ( − )2 7 国語 算数 理科 社会 英語 国語 1.000 -0.739 -0.511 0.990 0.998 算数 1.000 0.957 -0.638 -0.697 理科 1.000 -0.386 -0.458 社会 1.000 0.997
Χ2値 • 共変動の強さ(分散の大きさ) = 実測値、 = 期待値 2 = −
2 =1 • 分散が大きい程データには何らかの意味を持っ ている 8
数量化Ⅲ類 • 質的変数、量的に意味がないデータの解析。 • クロス集計表から線形関係を見出す 9 豚骨 鶏ガラ 煮干し マイルド
ピリ辛 こってり さっぱり A店 10 1 1 6 5 7 1 B店 10 0 0 2 3 9 0 C店 1 9 1 5 5 2 1 D店 0 1 8 2 0 1 6 E店 9 2 0 4 6 6 0 F店 8 6 7 9 10 1 7
数量化Ⅲ類 • 左列から順に数値の大きいものに入れ替える 10 豚骨 こってり マイルド ピリ辛 鶏ガラ 煮干し
さっぱり A店 10 7 6 5 1 1 1 B店 10 9 2 3 0 0 0 C店 1 2 5 5 9 1 1 D店 0 1 2 0 1 8 6 E店 9 6 4 6 2 0 0 F店 8 1 9 10 6 7 7
数量化Ⅲ類 • 上から順に数値の大きいもの • こってり-さっぱり 11 豚骨 こってり マイルド ピリ辛
鶏ガラ 煮干し さっぱり B店 10 9 2 3 0 0 0 A店 10 7 6 5 1 1 1 E店 9 6 4 6 2 0 0 F店 8 1 9 10 6 7 7 C店 1 2 5 5 9 1 1 D店 0 1 2 0 1 8 6
数量化Ⅲ類 • 寄与率 ▫ その軸がデータの何%を説明するかの指標 12 第一軸 第二軸 第三軸 第四軸
第五軸 寄与率 64.91% 29.13% 5.32% 0.56% 0.08% 累積寄与率 64.91% 94.04% 99.36% 99.92% 100%
数量化Ⅲ類 • 座標値 13 B C D A E F
煮干し さっぱり こってり 豚骨 マイルド 鶏ガラ ピリ辛
まとめ • 言葉などの質的データに対する客観的な分析方 法はすでに確立している。 • 言葉のデータはどれをキーワードにするか、析 出するかという点は、恣意的、主観的になる。 14
参考文献 • 福祉・心理・看護のテキストマイニング入門 藤井美和・小杉考司・李政元 編著 中央法規 15