Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal club] GRES: Generalized Referring Expr...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
June 23, 2023
Technology
0
120
[Journal club] GRES: Generalized Referring Expression Segmentation
Semantic Machine Intelligence Lab., Keio Univ.
PRO
June 23, 2023
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] GraphEQA: Using 3D Semantic Scene Graphs for Real-time Embodied Question Answering
keio_smilab
PRO
0
10
[RSJ25] Feasible RAG: Hierarchical Multimodal Retrieval with Feasibility-Aware Embodied Memory for Mobile Manipulation
keio_smilab
PRO
0
130
[RSJ25] LILAC: Language‑Conditioned Object‑Centric Optical Flow for Open‑Loop Trajectory Generation
keio_smilab
PRO
0
76
[RSJ25] Multilingual Scene Text-Aware Multimodal Retrieval for Everyday Objects Based on Deep State Space Models
keio_smilab
PRO
0
82
[RSJ25] Everyday Object Manipulation Based on Scene Text-Aware Multimodal Retrieval
keio_smilab
PRO
1
62
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
120
[Journal club] Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
keio_smilab
PRO
0
58
[Journal club] Steering Your Generalists: Improving Robotic Foundation Models via Value Guidance
keio_smilab
PRO
0
55
[Journal club] Influence-Balanced Loss for Imbalanced Visual Classification
keio_smilab
PRO
0
18
Other Decks in Technology
See All in Technology
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
510
KotlinConf 2025_イベントレポート
sony
1
140
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
230
MagicPod導入から半年、オープンロジQAチームで実際にやったこと
tjoko
0
110
LLM時代のパフォーマンスチューニング:MongoDB運用で試したコンテキスト活用の工夫
ishikawa_pro
0
180
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
460
エンジニアリングマネージャーの成長の道筋とキャリア / Developers Summit 2025 KANSAI
daiksy
3
1.2k
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
280
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
270
Wantedlyの開発組織における生成AIの浸透プロジェクトについて
kotominaga
2
120
Rustから学ぶ 非同期処理の仕組み
skanehira
1
160
会社紹介資料 / Sansan Company Profile
sansan33
PRO
7
380k
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Speed Design
sergeychernyshev
32
1.1k
Typedesign – Prime Four
hannesfritz
42
2.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The Invisible Side of Design
smashingmag
301
51k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
930
Building Adaptive Systems
keathley
43
2.7k
A Modern Web Designer's Workflow
chriscoyier
696
190k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Transcript
GRES: Generalized Referring Expression Segmentation 杉浦孔明研究室 九曜克之 Chang Liu† Henghui
Ding† Xudong Jiang Nanyang Technological University, Singapore CVPR2023 highlight Liu, Chang et al. "GRES: Generalized Referring Expression Segmentation." CVPR. 2023.
背景:既存のRESはno/malti-targetを考慮できていない 2 既存RES⼿法の制限 Lどのオブジェクトにもマッチしない場合を考慮していない(no target) L複数のインスタンスを指し⽰すマルチターゲット表現が含まれていない 既存のRESデータセットで学習された⼿法は、 このようなシナリオにうまく対応できない “two guys
in black jacket” “the bed with red sheet” 失敗例
関連研究:no-/multi-target設定に対しては不⼗分 3 PhraseCutにはmulti-target表現があるが,対象物が⼀意に定まらない場合にのみ使⽤ データセット no-target multi-target 形式 ReferIt [Kazemzadeh+, EMNLP14]
× × ⾃由 RefCOCOg [Mao+, CVPR16] × × ⾃由 PhraseCut [Wu+, CVPR20] × △ テンプレート
提案:任意の数の対象物を予測するRES 4 Generalized Referring Expression Segmentation(GRES) 参照表現と画像から対象物のセグメンテーションマスクを予測 対象物が存在しない場合を含めた任意の数の対象物を⽰す表現を許容 “Everyone except
the kid in white” “The kid in blue” (No Target)
データセット: RefCOCOを基にGRES⽤に新たに構築 5 gRefCOCO • RefCOCO [Kazemzadeh+, EMNLP14]を⽤いて構築 • 参照表現,対応する画像,対象物のマスク画像およびno-targetを⽰すラベル
画像数 インスタンス数 参照表現数 multi-target no-target 19,994 60,287 278,232 80,022 32,202 “horse on center and its rider” “the guy standing in back”(no target)
提案⼿法:ReLA 6 ReLAtionsip modeling block • Region-Image Cross Attention(RIA):領域内の画像特徴を獲得 •
Region-Language Cross Attention(RLA):領域間/領域-⾔語間の関係をモデル化
RIA:領域内の画像特徴を獲得 8 Region-based Queries:画像内の領域に対応する 学習可能なクエリ 画像特徴 とクエリ間でAttentionを計算 得られたAttention map と画像特徴から
領域ごとの画像特徴を得る GeLU 重み
RLA:領域間および領域-⾔語間の関係をモデル化 10 領域間 Self Attentionにより関係を考慮した 領域特徴 を得る 領域-⾔語間 ⾔語特徴 をKeyおよびValue
領域特徴 をQueryとして Cross Attentionを計算 最後に特徴を融合
実験設定:no-targetに拡張した標準的な尺度で評価 11 評価尺度 • cIoU(=oIoU),Precision@k • generalized IoU(≒mIoU) • no-target
sampleについて拡張 • TPの場合:gIoU = 1 • FNの場合:gIoU = 0 • N-acc/T-acc:no-target sample識別における評価尺度 実際にno-target,targetをどれだけ取りこぼさず予測できたかを表す
定量的結果:全ての集合で既存⼿法を上回る 13 既存RES⼿法のデコーダに提案⼿法を追加することでも性能向上
既存RESデータセットでも提案⼿法が⾼い性能 14 ほとんどの集合でLAVT [Yang+, CVPR22]よりも⾼い性能 J提案⼿法が既存RES⼿法にも有効
定性的結果:複雑な参照表現に適したマスクの⽣成 15 “two bowls on right” “Everyone except the blurry
guy” Jtwo bowlsという数の表現および on rightを正確に理解 Jexcept(除外関係)を理解
Ablation studies:特に領域間でのAttentionが有効 16 ベースライン:領域特徴×⾔語特徴量の平均 ü RLA内の領域-⾔語間のAttention,領域間のAttentionどちらも有効 ü 特に領域間のAttentionが有効
所感 17 Strengths • データセットと⼿法両⽅ • 標準データセットでも実験し性能向上している • ReLAは既存モデルと組み合わせても有⽤ Weaknesses
• no targetサンプルとして許容する/しないの基準が曖昧 • 画像に無いものを表現するとなると個⼈間のばらつきが⼤きそう Others • 改善するならRegion-based QueriesにSAMのマスクを導⼊ • 命名はどうにかならなかったのか…(gRefCOCO vs G-Ref)
まとめ 18 背景 既存のRESはno/malti-targetを考慮できていない 提案 no/malti-targetを許容したRESタスクGRES GRESタスクのためのデータセットgRefCOCO ベースラインモデルReLA 結果 gRefCOCOにおいて全ての評価尺度で既存RES⼿法を上回る
RESの標準データセットにおいて既存RES⼿法と同等以上の性能
Appendix
no-target識別性能を評価 20 専⽤の分類器がある⽅が望ましい ü それでも約40%のno-targetサンプルが⾒逃されている ReLA-50pix:予測マスクのピクセル数が50より⼩さい場合no-target
multi-targetがもたらす課題 21 1. 計数表現(序数詞と基数詞) 2. 幾何学的関係を持たない複合⽂構造( “A except B”, “A
with B or C”) 3. 属性の範囲(multi-targetにおいて属性がどこまで修飾するか) 4. より複雑な関係(代名詞)
no-targetサンプル作成時の条件 22 1. 画像と全く無関係な表現の禁⽌ 2. 1で必要な表現が思いつきにくい場合、RefCOCOの同じデータ集合に含まれる 他の画像から引き出された表現を選ぶことができる
gRefCOCOその他の例 23
定性的結果(失敗例) 24
学習設定 25 学習時間:記載なし デバイス:4 × V100 GPUs