Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ai Workforceを支える技術
Search
LayerX
PRO
August 07, 2024
Technology
3
2k
Ai Workforceを支える技術
2024年8月6日に開催されたLayerX AI-UX Night「次世代のユーザー体験と現在地」のイベントにて、AI・LLM事業部プロダクト開発チームEMの篠塚史弥が登壇した際の資料になります。
LayerX
PRO
August 07, 2024
Tweet
Share
More Decks by LayerX
See All by LayerX
AI時代の経営、Bet AI Vision #BetAIDay
layerx
PRO
5
3k
バクラクによるコーポレート業務の自動運転 #BetAIDay
layerx
PRO
1
1.3k
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
1k
LLMをツールからプラットフォームへ〜Ai Workforceの戦略〜 #BetAIDay
layerx
PRO
1
1.5k
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
5
2.4k
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
10
2.9k
生成AI時代におけるAI・機械学習技術を用いたプロダクト開発の深化と進化 #BetAIDay
layerx
PRO
1
1.7k
AIエージェントが変える開発組織のEnabling #開発生産性con_findy
layerx
PRO
3
28k
LayerX AI・LLM Division Deck
layerx
PRO
2
42k
Other Decks in Technology
See All in Technology
Unlocking the Power of AI Agents with LINE Bot MCP Server
linedevth
0
110
はじめてのOSS開発からみえたGo言語の強み
shibukazu
3
970
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
460
Codeful Serverless / 一人運用でもやり抜く力
_kensh
7
450
Claude Code でアプリ開発をオートパイロットにするためのTips集 Zennの場合 / Claude Code Tips in Zenn
wadayusuke
5
840
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
130
react-callを使ってダイヤログをいろんなとこで再利用しよう!
shinaps
2
260
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
430
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
460
スクラムガイドに載っていないスクラムのはじめかた - チームでスクラムをはじめるときに知っておきたい勘所を集めてみました! - / How to start Scrum that is not written in the Scrum Guide 2nd
takaking22
1
160
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
230
DroidKaigi 2025 Androidエンジニアとしてのキャリア
mhidaka
2
380
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
530
Designing for humans not robots
tammielis
253
25k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Become a Pro
speakerdeck
PRO
29
5.5k
Facilitating Awesome Meetings
lara
55
6.5k
How GitHub (no longer) Works
holman
315
140k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Site-Speed That Sticks
csswizardry
10
820
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
113
20k
Transcript
© LayerX Inc. Ai Workforceを支える技術 2024/08/06 篠塚 史弥 LayerX AI-UX
Night「次世代のユーザー体験と現在地」
2 Confidential © 2024 LayerX Inc. 篠塚 史弥 LayerX AI・LLM事業部プロダクト開発チームEM
プロダクト開発のリード、開発チームのマネジメントを行う傍ら、 LLM PoCプロジェクトのPMや顧客へのプロダクト導入の推進を担う 元FiNC Technologies, CTO X: @shinofumijp
© LayerX Inc. 3 今日話すこと Ai Workforceの実装について話します!
© LayerX Inc. 4 Ai Workforceの概要 AIワークフロー構築 AIワークフロー実行 AIワークフロー結果 レビュー・修正
AIワークフロー改善
AI-UXを支える技術
© LayerX Inc. 6 インフラ構成 (全体) • Azure上にアプリケーションを構築 • SPA+APIサーバー+非同期処理
Workerの標準的なWebアプリケーショ ン構成 • APIサーバーと非同期処理Workerの間 のコミュニケーションはAzure Queue Storageを利用 • AIソリューションにはAzure OpenAI Service, Azure AI Document Intelligence, Azure AI Searchを 利用 Azure Container Apps Azure Container Apps Azure Application Gateway Azure Cosmos DB Azure OpenAI Service Azure AI Document Intelligence Azure AI Search Azure Blob Storage Azure Queue Storage SPA APIサーバー 非同期処理Worker App Service
© LayerX Inc. 7 Azure Container Apps App Service Azure
Container Apps Azure Application Gateway Azure Cosmos DB Azure OpenAI Service Azure AI Document Intelligence Azure AI Search Azure Blob Storage Azure Queue Storage SPA APIサーバー アプリケーションワークロード と利用技術 • フロントエンドはApp Service、APIサー バー・非同期処理Workerのワークロードは Azure Container Apps • フロントエンドはTypeScript(React)、 APIサーバーはPython(FastAPI)、非同期 処理WorkerはPython ◦ ワークフローエンジンは自前実装 • Azure OpenAI Service, Azure AI Document Intelligenceなど時間がかか る処理はWorkerを介して非同期的に実行 非同期処理Worker
AI-UXを支える機能事例の紹介
© LayerX Inc. 9 AIワークフロー結果のレビュー・修正機能 レビュー機能はAI-UXの根幹 - LLM処理の精度は100%にはならない - 人間が業務を遂行する上で「間違いがない」出力を得たい
- 人間の手によって精度の不足を補完する必要がある 人間がAIの間違いをすぐに見つけられ 容易に修正できる体験が重要
© LayerX Inc. 10 抽出元のページ をクリック 参照元をハイライト ※出典) 3M. (2024).
3M 2023 Annual Report. U.S. Securities and Exchange Commission. https://www.sec.gov/Archives/edgar/data/66740/000130817924000309/mmm4298631-ars.pdf
© LayerX Inc. 11 参照元ハイライト機能の実装 ①Azure AI Document IntelligenceでOCR 処理をして、テキストの座標を取得
②LLM処理で参照元となるテキスト情報を取得 ③①と②の結果からLougeスコアでマッチするもの を判定 LLM処理結果に参照元の座標情報を付与する ④フロントで座標情報に基づきハイライト Azure AI Document Intelligence Azure OpenAI Service フロントApp ドキュメント ① ② ③ ④
© LayerX Inc. 12 AI-UXはデザインとソフトウェアの総合格闘技戦 AI-UXは「AI精度」「プロダクト体験」「ソフトウェアエンジニアリング」によって支えられる - AI精度とプロダクト機能は不可分 - AI精度もタスク設計に合わせた評価指標が重要
- AI精度を補うためのプロダクトデザインとそれを実現するためのエンジニアリング
© LayerX Inc. 13 AI-UX向上のための今後の展望 ①LLMネイティブな体験・UIの追求 ②AI精度の継続的な改善のための監視基盤の構築 ③AI精度とプロダクト体験をより統合したソフトウェア開発