Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Ai Workforceを支える技術

LayerX
August 07, 2024

Ai Workforceを支える技術

2024年8月6日に開催されたLayerX AI-UX Night「次世代のユーザー体験と現在地」のイベントにて、AI・LLM事業部プロダクト開発チームEMの篠塚史弥が登壇した際の資料になります。

LayerX

August 07, 2024
Tweet

More Decks by LayerX

Other Decks in Technology

Transcript

  1. © LayerX Inc. Ai Workforceを支える技術 2024/08/06 篠塚 史弥 LayerX AI-UX

    Night「次世代のユーザー体験と現在地」
  2. 2 Confidential © 2024 LayerX Inc. 篠塚 史弥 LayerX AI・LLM事業部プロダクト開発チームEM

    プロダクト開発のリード、開発チームのマネジメントを行う傍ら、 LLM PoCプロジェクトのPMや顧客へのプロダクト導入の推進を担う 元FiNC Technologies, CTO X: @shinofumijp
  3. © LayerX Inc. 6 インフラ構成 (全体) • Azure上にアプリケーションを構築 • SPA+APIサーバー+非同期処理

    Workerの標準的なWebアプリケーショ ン構成 • APIサーバーと非同期処理Workerの間 のコミュニケーションはAzure Queue Storageを利用 • AIソリューションにはAzure OpenAI Service, Azure AI Document Intelligence, Azure AI Searchを 利用 Azure Container Apps Azure Container Apps Azure Application Gateway Azure Cosmos DB Azure OpenAI Service Azure AI Document Intelligence Azure AI Search Azure Blob Storage Azure Queue Storage SPA APIサーバー 非同期処理Worker App Service
  4. © LayerX Inc. 7 Azure Container Apps App Service Azure

    Container Apps Azure Application Gateway Azure Cosmos DB Azure OpenAI Service Azure AI Document Intelligence Azure AI Search Azure Blob Storage Azure Queue Storage SPA APIサーバー アプリケーションワークロード と利用技術 • フロントエンドはApp Service、APIサー バー・非同期処理Workerのワークロードは Azure Container Apps • フロントエンドはTypeScript(React)、 APIサーバーはPython(FastAPI)、非同期 処理WorkerはPython ◦ ワークフローエンジンは自前実装 • Azure OpenAI Service, Azure AI Document Intelligenceなど時間がかか る処理はWorkerを介して非同期的に実行 非同期処理Worker
  5. © LayerX Inc. 9 AIワークフロー結果のレビュー・修正機能 レビュー機能はAI-UXの根幹 - LLM処理の精度は100%にはならない - 人間が業務を遂行する上で「間違いがない」出力を得たい

    - 人間の手によって精度の不足を補完する必要がある 人間がAIの間違いをすぐに見つけられ 容易に修正できる体験が重要
  6. © LayerX Inc. 10 抽出元のページ をクリック 参照元をハイライト ※出典) 3M. (2024).

    3M 2023 Annual Report. U.S. Securities and Exchange Commission. https://www.sec.gov/Archives/edgar/data/66740/000130817924000309/mmm4298631-ars.pdf
  7. © LayerX Inc. 11 参照元ハイライト機能の実装 ①Azure AI Document IntelligenceでOCR 処理をして、テキストの座標を取得

    ②LLM処理で参照元となるテキスト情報を取得 ③①と②の結果からLougeスコアでマッチするもの を判定 LLM処理結果に参照元の座標情報を付与する ④フロントで座標情報に基づきハイライト Azure AI Document Intelligence Azure OpenAI Service フロントApp ドキュメント ① ② ③ ④