Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
協調フィルタリング #TechLunch
Search
Livesense Inc.
PRO
April 21, 2014
Technology
0
68
協調フィルタリング #TechLunch
協調フィルタリング
2012/08/08 (水) @ Livesense TechLunch
発表者:土屋 雅行
Livesense Inc.
PRO
April 21, 2014
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
770
26新卒_総合職採用_会社説明資料
livesense
PRO
0
1.5k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
8.8k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
5k
中途セールス職_会社説明資料
livesense
PRO
0
140
EM候補者向け転職会議説明資料
livesense
PRO
0
58
コロナで失われたノベルティ作成ノウハウを復活させた話
livesense
PRO
0
180
転職会議でGPT-3を活用した企業口コミ要約機能をリリースした話
livesense
PRO
0
1.2k
株式会社リブセンス マッハバイト_プレイブック
livesense
PRO
0
720
Other Decks in Technology
See All in Technology
『Firebase Dynamic Links終了に備える』 FlutterアプリでのAdjust導入とDeeplink最適化
techiro
0
180
アジャイルチームがらしさを発揮するための目標づくり / Making the goal and enabling the team
kakehashi
3
170
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
Mastering Quickfix
daisuzu
1
260
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.9k
アプリエンジニアのためのGraphQL入門.pdf
spycwolf
0
110
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
New Relicを活用したSREの最初のステップ / NRUG OKINAWA VOL.3
isaoshimizu
3
650
AI前提のサービス運用ってなんだろう?
ryuichi1208
8
1.4k
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
140
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
390
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
10
1.4k
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
Music & Morning Musume
bryan
46
6.2k
Making Projects Easy
brettharned
115
5.9k
Happy Clients
brianwarren
98
6.7k
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
Raft: Consensus for Rubyists
vanstee
136
6.6k
How to train your dragon (web standard)
notwaldorf
88
5.7k
What's new in Ruby 2.0
geeforr
343
31k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Adopting Sorbet at Scale
ufuk
73
9.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Unsuck your backbone
ammeep
668
57k
Transcript
協調フィルタリング 土屋雅行
2 INDEX レコメンド技術導入の目的・メリット レコメンド技術導入で起こってはならないこと 協調フィルタリング アイテムベースの考え方
アイテムベースの問題点 ユーザーベースの考え方 ユーザーベースの問題点 アイテムベースの問題点の解決
3 レコメンド技術導入の目的・メリット コンバージョンに結びつく効果的なレコメン ド 検索・回遊導線の向上 簡単で意図的なレコメンド
セレンディピティ(思いがけない発見)の提 供
4 不適切なレコメンド 重複したレコメンド 既存システムに負荷などのリスクを与える レコメンド技術導入で起こっては ならないこと
5 アイテムベース →ユーザー行動履歴を基に、アイテム間の 類似値を分析し、関連性の高いアイテムを 推薦 ユーザーベース →ユーザー行動履歴を基に、ユーザーごと の嗜好の類似値を分析し、他のユーザーが
好んだアイテムを推薦 協調フィルタリング
6 アイテムベースの考え方 別資料
7 アイテムベースの問題点 1. セットで閲覧するケースが少ない場合、レコメンドされない 、またはレコメンドの精度が悪くなる 2. レコメンドされるアイテムが人気の高いアイテムに偏る 3. レコメンドされるアイテムが長期間掲載しているアイテム に偏る
4. 同一アイテムに対する連続的な閲覧や、クローラー、運営 者などの閲覧によって偏る 5. 関連性のないカテゴリのアイテムがレコメンドされてしまう 6. 自動計算では意図的なレコメンドができない
8 ユーザーベースの考え方 別資料
9 ユーザーベースの問題点 1. ユーザーごとのデータ蓄積が必要なため、初回訪問者へ のレコメンドができない 2. ユーザー数>>アイテム数なため、アイテムベースに比 べて精度が保てる程度のまでのデータ蓄積が遅い 3. ユーザー数>>アイテム数なため、データと計算量が膨
大
10 アイテムベースの問題点の解決 問題1:精度が悪い →行動履歴取得を複数ヶ所で+重み付け 例) ・閲覧×1 ・お気に入り登録×5 ・応募×10
11 アイテムベースの問題点の解決 問題2~4:偏る →各レコメンドアイテムに対する評価を、例えば、5段階で 定義し、レコメンド確率を再設定する 例) 別資料 →1ヶ月前の閲覧より昨日の閲覧を高く評価する、一定期 間より昔の閲覧を集計から除外 →同一アイテムに対する連続的な閲覧や、クローラー、運
営者などの閲覧、レコメンド経由の閲覧を集計から除外
12 アイテムベースの問題点の解決 問題5:関連性のないカテゴリのアイテムがレコメンドされる →ユーザーの登録情報を基にフィルタリング 例)希望職種や希望業種 問題6:意図的なレコメンドができない →一定のルールを適用できる機能を作る 例)特定の企業、求人をレコメンドする(しない)
13 次回 スマートフォン開発について