Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Char-rnn aurkezpena
Search
Manex Agirrezabal
March 14, 2016
Research
0
97
Char-rnn aurkezpena
Manex Agirrezabal
March 14, 2016
Tweet
Share
More Decks by Manex Agirrezabal
See All by Manex Agirrezabal
The Flipped Classroom model for teaching Conditional Random Fields in an NLP course
manexagirrezabal
0
35
NLP for poetry generation and analysis
manexagirrezabal
0
78
Institut seminar 2020
manexagirrezabal
0
38
Automatic Scansion of Poetry (KU)
manexagirrezabal
0
660
RANLP talk
manexagirrezabal
0
77
Defense (Final version)
manexagirrezabal
0
74
Poesiaren eskantsio automatikoa: Bi hizkuntzen azterketa
manexagirrezabal
0
76
CodeFEST literature presentation
manexagirrezabal
0
63
Ongoing work (in mid 2016)
manexagirrezabal
0
25
Other Decks in Research
See All in Research
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
210
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
600
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
620
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
920
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
170
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
710
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.6k
Remote sensing × Multi-modal meta survey
satai
4
710
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
Featured
See All Featured
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
52
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Large-scale JavaScript Application Architecture
addyosmani
515
110k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Transcript
Poesiaren metrika DL bidez Manex Agirrezabal https://github.com/manexagirrezabal/char-rnn/
Proba ezberdinak TensorFlow: Sequence-to-sequence models https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html Torch: char-rnn (Andrew Karpathy)
https://github.com/karpathy/char-rnn/
Char-rnn http://karpathy.github.io/2015/05/21/rnn-effectiveness/ Karaktere mailako hizkuntz-ereduak sortzeko balio du. Sarrera gisa
testu hutsa.
Char-rnn Gure beharretarako moldatu behar: to swell the gourd and
plump the ha zel shells - ' - ' - ' - ' - ' wo man much missed how you call to me call to me ' - - ' - - ' - - ' - -
Char-rnn Dataset-a testu soil gisa: To_= swell_+ the_= gourd_+ and_=
plump_+ the_= ha_+ zel_= shells_+ To_= swell_+ the_= gourd_+ and_= plump_+ the_= hazel_+= shells_+ Wo_+ man_= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_= Woman_+= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_=
Char-rnn (training) $ th train.lua Parametroak: Model: [RNN, LSTM edo
GRU] rnn_size: LSTMaren (zelda) barruko tamaina num_layers: LSTMaren kapa kopurua seq_length: sekuentzian ikasteko karaktere kopurua
Char-rnn (prediction) $ th sample(mod).lua Parametroak: Model: eredu entrenatua Primetext:
sarrera testua (_ karakterearekin amaituta)
Char-rnn (prediction) Python programa bat (callSampleMod.py) aurreko programari deitzeko pausuz
pausu: $ th sampleMod.lua model M1 primetext “to_” = $ th sampleMod.lua model M1 primetext “to_= swell_” + $ th sampleMod.lua model M1 primetext “to_= swell_+ the_” = ...
Char-rnn (prediction) Arazoa: Hasieran, informazio gutxi duenez, batzuetan hanka sartzen
(+ propagatzen) du predikzioan. Adibidez, “to_” sarrerarekin Horrentzako soluzioa, predikzioa bi aldetara egitea.
Char-rnn (FW) Parametroak optimizatu nahi ditugu (seq_length, batch_size, rnn_size, ...)
Embedding-ak erabili nahi ditugu, baina gure hipotesia da ez dutela asko lagunduko.