Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Char-rnn aurkezpena
Search
Manex Agirrezabal
March 14, 2016
Research
0
91
Char-rnn aurkezpena
Manex Agirrezabal
March 14, 2016
Tweet
Share
More Decks by Manex Agirrezabal
See All by Manex Agirrezabal
The Flipped Classroom model for teaching Conditional Random Fields in an NLP course
manexagirrezabal
0
33
NLP for poetry generation and analysis
manexagirrezabal
0
73
Institut seminar 2020
manexagirrezabal
0
35
Automatic Scansion of Poetry (KU)
manexagirrezabal
0
600
RANLP talk
manexagirrezabal
0
74
Defense (Final version)
manexagirrezabal
0
73
Poesiaren eskantsio automatikoa: Bi hizkuntzen azterketa
manexagirrezabal
0
73
CodeFEST literature presentation
manexagirrezabal
0
62
Ongoing work (in mid 2016)
manexagirrezabal
0
24
Other Decks in Research
See All in Research
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
240
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
1.1k
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
830
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
420
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
230
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
120
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
330
CoRL2025速報
rpc
1
1.5k
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
630
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
180
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
340
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
3.5k
Featured
See All Featured
A better future with KSS
kneath
239
17k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Site-Speed That Sticks
csswizardry
11
880
Fireside Chat
paigeccino
40
3.7k
For a Future-Friendly Web
brad_frost
180
9.9k
Side Projects
sachag
455
43k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
570
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Building an army of robots
kneath
306
46k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Transcript
Poesiaren metrika DL bidez Manex Agirrezabal https://github.com/manexagirrezabal/char-rnn/
Proba ezberdinak TensorFlow: Sequence-to-sequence models https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html Torch: char-rnn (Andrew Karpathy)
https://github.com/karpathy/char-rnn/
Char-rnn http://karpathy.github.io/2015/05/21/rnn-effectiveness/ Karaktere mailako hizkuntz-ereduak sortzeko balio du. Sarrera gisa
testu hutsa.
Char-rnn Gure beharretarako moldatu behar: to swell the gourd and
plump the ha zel shells - ' - ' - ' - ' - ' wo man much missed how you call to me call to me ' - - ' - - ' - - ' - -
Char-rnn Dataset-a testu soil gisa: To_= swell_+ the_= gourd_+ and_=
plump_+ the_= ha_+ zel_= shells_+ To_= swell_+ the_= gourd_+ and_= plump_+ the_= hazel_+= shells_+ Wo_+ man_= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_= Woman_+= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_=
Char-rnn (training) $ th train.lua Parametroak: Model: [RNN, LSTM edo
GRU] rnn_size: LSTMaren (zelda) barruko tamaina num_layers: LSTMaren kapa kopurua seq_length: sekuentzian ikasteko karaktere kopurua
Char-rnn (prediction) $ th sample(mod).lua Parametroak: Model: eredu entrenatua Primetext:
sarrera testua (_ karakterearekin amaituta)
Char-rnn (prediction) Python programa bat (callSampleMod.py) aurreko programari deitzeko pausuz
pausu: $ th sampleMod.lua model M1 primetext “to_” = $ th sampleMod.lua model M1 primetext “to_= swell_” + $ th sampleMod.lua model M1 primetext “to_= swell_+ the_” = ...
Char-rnn (prediction) Arazoa: Hasieran, informazio gutxi duenez, batzuetan hanka sartzen
(+ propagatzen) du predikzioan. Adibidez, “to_” sarrerarekin Horrentzako soluzioa, predikzioa bi aldetara egitea.
Char-rnn (FW) Parametroak optimizatu nahi ditugu (seq_length, batch_size, rnn_size, ...)
Embedding-ak erabili nahi ditugu, baina gure hipotesia da ez dutela asko lagunduko.