Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Char-rnn aurkezpena
Search
Manex Agirrezabal
March 14, 2016
Research
0
97
Char-rnn aurkezpena
Manex Agirrezabal
March 14, 2016
Tweet
Share
More Decks by Manex Agirrezabal
See All by Manex Agirrezabal
The Flipped Classroom model for teaching Conditional Random Fields in an NLP course
manexagirrezabal
0
35
NLP for poetry generation and analysis
manexagirrezabal
0
78
Institut seminar 2020
manexagirrezabal
0
38
Automatic Scansion of Poetry (KU)
manexagirrezabal
0
660
RANLP talk
manexagirrezabal
0
77
Defense (Final version)
manexagirrezabal
0
74
Poesiaren eskantsio automatikoa: Bi hizkuntzen azterketa
manexagirrezabal
0
76
CodeFEST literature presentation
manexagirrezabal
0
63
Ongoing work (in mid 2016)
manexagirrezabal
0
25
Other Decks in Research
See All in Research
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
260
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
210
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
510
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
Featured
See All Featured
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
350
Un-Boring Meetings
codingconduct
0
200
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
94
Crafting Experiences
bethany
1
49
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Embracing the Ebb and Flow
colly
88
5k
Transcript
Poesiaren metrika DL bidez Manex Agirrezabal https://github.com/manexagirrezabal/char-rnn/
Proba ezberdinak TensorFlow: Sequence-to-sequence models https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html Torch: char-rnn (Andrew Karpathy)
https://github.com/karpathy/char-rnn/
Char-rnn http://karpathy.github.io/2015/05/21/rnn-effectiveness/ Karaktere mailako hizkuntz-ereduak sortzeko balio du. Sarrera gisa
testu hutsa.
Char-rnn Gure beharretarako moldatu behar: to swell the gourd and
plump the ha zel shells - ' - ' - ' - ' - ' wo man much missed how you call to me call to me ' - - ' - - ' - - ' - -
Char-rnn Dataset-a testu soil gisa: To_= swell_+ the_= gourd_+ and_=
plump_+ the_= ha_+ zel_= shells_+ To_= swell_+ the_= gourd_+ and_= plump_+ the_= hazel_+= shells_+ Wo_+ man_= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_= Woman_+= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_=
Char-rnn (training) $ th train.lua Parametroak: Model: [RNN, LSTM edo
GRU] rnn_size: LSTMaren (zelda) barruko tamaina num_layers: LSTMaren kapa kopurua seq_length: sekuentzian ikasteko karaktere kopurua
Char-rnn (prediction) $ th sample(mod).lua Parametroak: Model: eredu entrenatua Primetext:
sarrera testua (_ karakterearekin amaituta)
Char-rnn (prediction) Python programa bat (callSampleMod.py) aurreko programari deitzeko pausuz
pausu: $ th sampleMod.lua model M1 primetext “to_” = $ th sampleMod.lua model M1 primetext “to_= swell_” + $ th sampleMod.lua model M1 primetext “to_= swell_+ the_” = ...
Char-rnn (prediction) Arazoa: Hasieran, informazio gutxi duenez, batzuetan hanka sartzen
(+ propagatzen) du predikzioan. Adibidez, “to_” sarrerarekin Horrentzako soluzioa, predikzioa bi aldetara egitea.
Char-rnn (FW) Parametroak optimizatu nahi ditugu (seq_length, batch_size, rnn_size, ...)
Embedding-ak erabili nahi ditugu, baina gure hipotesia da ez dutela asko lagunduko.