Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Char-rnn aurkezpena
Search
Manex Agirrezabal
March 14, 2016
Research
0
96
Char-rnn aurkezpena
Manex Agirrezabal
March 14, 2016
Tweet
Share
More Decks by Manex Agirrezabal
See All by Manex Agirrezabal
The Flipped Classroom model for teaching Conditional Random Fields in an NLP course
manexagirrezabal
0
35
NLP for poetry generation and analysis
manexagirrezabal
0
78
Institut seminar 2020
manexagirrezabal
0
38
Automatic Scansion of Poetry (KU)
manexagirrezabal
0
640
RANLP talk
manexagirrezabal
0
77
Defense (Final version)
manexagirrezabal
0
74
Poesiaren eskantsio automatikoa: Bi hizkuntzen azterketa
manexagirrezabal
0
76
CodeFEST literature presentation
manexagirrezabal
0
63
Ongoing work (in mid 2016)
manexagirrezabal
0
25
Other Decks in Research
See All in Research
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
390
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
190
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
100
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
湯村研究室の紹介2025 / yumulab2025
yumulab
0
270
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
340
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
100
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
2
250
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
110
Featured
See All Featured
Designing for Timeless Needs
cassininazir
0
93
How to build a perfect <img>
jonoalderson
0
4.7k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
710
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
44
Color Theory Basics | Prateek | Gurzu
gurzu
0
150
Practical Orchestrator
shlominoach
190
11k
Optimizing for Happiness
mojombo
379
70k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
Faster Mobile Websites
deanohume
310
31k
How to make the Groovebox
asonas
2
1.8k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
89
Transcript
Poesiaren metrika DL bidez Manex Agirrezabal https://github.com/manexagirrezabal/char-rnn/
Proba ezberdinak TensorFlow: Sequence-to-sequence models https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html Torch: char-rnn (Andrew Karpathy)
https://github.com/karpathy/char-rnn/
Char-rnn http://karpathy.github.io/2015/05/21/rnn-effectiveness/ Karaktere mailako hizkuntz-ereduak sortzeko balio du. Sarrera gisa
testu hutsa.
Char-rnn Gure beharretarako moldatu behar: to swell the gourd and
plump the ha zel shells - ' - ' - ' - ' - ' wo man much missed how you call to me call to me ' - - ' - - ' - - ' - -
Char-rnn Dataset-a testu soil gisa: To_= swell_+ the_= gourd_+ and_=
plump_+ the_= ha_+ zel_= shells_+ To_= swell_+ the_= gourd_+ and_= plump_+ the_= hazel_+= shells_+ Wo_+ man_= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_= Woman_+= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_=
Char-rnn (training) $ th train.lua Parametroak: Model: [RNN, LSTM edo
GRU] rnn_size: LSTMaren (zelda) barruko tamaina num_layers: LSTMaren kapa kopurua seq_length: sekuentzian ikasteko karaktere kopurua
Char-rnn (prediction) $ th sample(mod).lua Parametroak: Model: eredu entrenatua Primetext:
sarrera testua (_ karakterearekin amaituta)
Char-rnn (prediction) Python programa bat (callSampleMod.py) aurreko programari deitzeko pausuz
pausu: $ th sampleMod.lua model M1 primetext “to_” = $ th sampleMod.lua model M1 primetext “to_= swell_” + $ th sampleMod.lua model M1 primetext “to_= swell_+ the_” = ...
Char-rnn (prediction) Arazoa: Hasieran, informazio gutxi duenez, batzuetan hanka sartzen
(+ propagatzen) du predikzioan. Adibidez, “to_” sarrerarekin Horrentzako soluzioa, predikzioa bi aldetara egitea.
Char-rnn (FW) Parametroak optimizatu nahi ditugu (seq_length, batch_size, rnn_size, ...)
Embedding-ak erabili nahi ditugu, baina gure hipotesia da ez dutela asko lagunduko.