Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Char-rnn aurkezpena
Search
Manex Agirrezabal
March 14, 2016
Research
0
94
Char-rnn aurkezpena
Manex Agirrezabal
March 14, 2016
Tweet
Share
More Decks by Manex Agirrezabal
See All by Manex Agirrezabal
The Flipped Classroom model for teaching Conditional Random Fields in an NLP course
manexagirrezabal
0
35
NLP for poetry generation and analysis
manexagirrezabal
0
78
Institut seminar 2020
manexagirrezabal
0
37
Automatic Scansion of Poetry (KU)
manexagirrezabal
0
640
RANLP talk
manexagirrezabal
0
75
Defense (Final version)
manexagirrezabal
0
74
Poesiaren eskantsio automatikoa: Bi hizkuntzen azterketa
manexagirrezabal
0
76
CodeFEST literature presentation
manexagirrezabal
0
63
Ongoing work (in mid 2016)
manexagirrezabal
0
25
Other Decks in Research
See All in Research
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
110
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
34k
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
980
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
350
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
320
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.2k
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
570
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
390
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
100
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Embracing the Ebb and Flow
colly
88
4.9k
[SF Ruby Conf 2025] Rails X
palkan
0
500
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
94
Balancing Empowerment & Direction
lara
5
790
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Transcript
Poesiaren metrika DL bidez Manex Agirrezabal https://github.com/manexagirrezabal/char-rnn/
Proba ezberdinak TensorFlow: Sequence-to-sequence models https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html Torch: char-rnn (Andrew Karpathy)
https://github.com/karpathy/char-rnn/
Char-rnn http://karpathy.github.io/2015/05/21/rnn-effectiveness/ Karaktere mailako hizkuntz-ereduak sortzeko balio du. Sarrera gisa
testu hutsa.
Char-rnn Gure beharretarako moldatu behar: to swell the gourd and
plump the ha zel shells - ' - ' - ' - ' - ' wo man much missed how you call to me call to me ' - - ' - - ' - - ' - -
Char-rnn Dataset-a testu soil gisa: To_= swell_+ the_= gourd_+ and_=
plump_+ the_= ha_+ zel_= shells_+ To_= swell_+ the_= gourd_+ and_= plump_+ the_= hazel_+= shells_+ Wo_+ man_= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_= Woman_+= much_= missed_+ how_= you_= call_+ to_= me_= call_+ to_= me_=
Char-rnn (training) $ th train.lua Parametroak: Model: [RNN, LSTM edo
GRU] rnn_size: LSTMaren (zelda) barruko tamaina num_layers: LSTMaren kapa kopurua seq_length: sekuentzian ikasteko karaktere kopurua
Char-rnn (prediction) $ th sample(mod).lua Parametroak: Model: eredu entrenatua Primetext:
sarrera testua (_ karakterearekin amaituta)
Char-rnn (prediction) Python programa bat (callSampleMod.py) aurreko programari deitzeko pausuz
pausu: $ th sampleMod.lua model M1 primetext “to_” = $ th sampleMod.lua model M1 primetext “to_= swell_” + $ th sampleMod.lua model M1 primetext “to_= swell_+ the_” = ...
Char-rnn (prediction) Arazoa: Hasieran, informazio gutxi duenez, batzuetan hanka sartzen
(+ propagatzen) du predikzioan. Adibidez, “to_” sarrerarekin Horrentzako soluzioa, predikzioa bi aldetara egitea.
Char-rnn (FW) Parametroak optimizatu nahi ditugu (seq_length, batch_size, rnn_size, ...)
Embedding-ak erabili nahi ditugu, baina gure hipotesia da ez dutela asko lagunduko.