Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Developer Productivity in Cookpad
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Issei Naruta
June 03, 2015
Technology
174
42k
Developer Productivity in Cookpad
クックパッドはなぜ開発しやすいのか
At AWS Summit Tokyo 2015 Developer Conference
2015/06/03
Issei Naruta
June 03, 2015
Tweet
Share
More Decks by Issei Naruta
See All by Issei Naruta
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
680
インフラからSREへ
mirakui
32
14k
データパイプラインをなんとかした話 / Improving the Data Pipeline in IVRy
mirakui
1
620
Cookpad TechConf 2022 Keynote
mirakui
0
4k
ドライイーストを使わずにパンを焼けるか? 〜天然酵母のパン作りを支える技術〜
mirakui
0
3.6k
関東積みについて/How to build Kanto-stacking
mirakui
0
740
先折りGTRについて/How to build left-GTR transitions
mirakui
3
1.1k
サービス開発速度に着目したソフトウェアアーキテクチャ/Software architecture for effective service development at Cookpad
mirakui
5
7.2k
Beyond the Boundaries
mirakui
1
1.4k
Other Decks in Technology
See All in Technology
エンジニアとマネジメントの距離/Engineering and Management
ikuodanaka
3
660
漸進的過負荷の原則
sansantech
PRO
3
410
BPaaSオペレーション・kubell社内 n8n活用による効率化検証事例紹介
kubell_hr
0
330
Zephyr RTOS の発表をOpen Source Summit Japan 2025で行った件
iotengineer22
0
280
AI推進者の視点で見る、Bill OneのAI活用の今
sansantech
PRO
1
170
一番人に近いコードレビューア CodeRabbit
kinopeee
0
110
ファシリテーション勉強中 その場に何が求められるかを考えるようになるまで / 20260123 Naoki Takahashi
shift_evolve
PRO
3
390
プロダクトエンジニアこそ必要なPMスキル 〜デリバリー力を最大化し、価値を届け続けるために〜
layerx
PRO
0
140
いよいよ仕事を奪われそうな波が来たぜ
kazzpapa3
3
280
AI開発の落とし穴 〜馬には乗ってみよAIには添うてみよ〜
sansantech
PRO
9
4.8k
GCASアップデート(202510-202601)
techniczna
0
180
Werner Vogelsが14年間 問い続けてきたこと
yusukeshimizu
2
240
Featured
See All Featured
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
GraphQLとの向き合い方2022年版
quramy
50
14k
Google's AI Overviews - The New Search
badams
0
890
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
160
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
390
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
47
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
66
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Are puppies a ranking factor?
jonoalderson
1
2.6k
Chasing Engaging Ingredients in Design
codingconduct
0
110
Transcript
ΫοΫύουͳͥ ։ൃ͍͢͠ͷ͔ ΫοΫύουגࣜձࣾాҰੜ "844VNNJU5PLZP
ాҰੜ ͳΔͨ ͍͍ͬͤ !NJSBLVJ ΫοΫύουגࣜձࣾ ΠϯϑϥετϥΫνϟʔ෦
ΫοΫύουʹ͍ͭͯ
.6#NP .14VTFST .DPPLJOHSFDJQFT ˞݄ݱࡏ !" # !
'VMM"84 20113݄ ౦ژϦʔδϣϯΦʔϓϯ 20118݄ DC͔ΒAWSҠߦ ✈
&$JOTUBODFT BUQFBL SFRTFD BUQFBL $
0QT %FWFMPQFST %FQMPZTEBZ ⚒ #
IUUQTTQFBLFSEFDLDPNB@NBUTVEBUIFSFDJQFGPSUIFXPSMETMBSHFTUSBJMTNPOPMJUI ΫοΫύουੈքҰڊେͳ ϞϊϦγοΫ3BJMTΞϓϦέʔγϣϯʢ͔͠Ε·ͤΜʣ
None
ʮ։ൃ͍͢͠ʯͱԿ͔
% ʮ։ൃ͠ʹ͍͘ʯঢ়ଶͷྫ ٕज़తͳʹΑͬͯΠϊϕʔγϣϯ્͕͞Ε͍ͯΔঢ়ଶ େྔͷϨΨγʔίʔυɺٕज़తෛ࠴ ςετ͋Δ͚Ͳৗʹ͍͔ͭ͘ Fail ͍ͯͯ͠ɺ ์ஔ͞Ε͍ͯΔ σϓϩΠ͕ଐਓతͰɺ͕͔͔࣌ؒΓ͗ͨ͢Γɺ ͨ·ʹࣦഊͨ͠Γ͢Δ
։ൃ͠ʹͯ͘͘Կ͕ѱ͍ʁ ݱָ͕Λ͍ͨ͠ ૉૣ͘ՁΛఏڙ͍ͨ͠
⚒ ։ൃ σϓϩΠ ςετ
։ൃ ⚒
None
None
αʔϏε։ൃͱԿͳͷ͔ ࡞͍ͬͯΔͷʮػೳʯͰͳ͘ʮαʔϏεʯʮϢʔβମݧʯ μϛʔσʔλͰͳ͘ຊ൪ͷσʔλΛͬͯ։ൃ͢Δ͖ &
ຊ൪ͱಉظͨ͠%#Ͱ։ൃ͢ΔϝϦοτ • Ϣʔβʔͱಉͷମݧ • ༧ظͤ͵σʔλʹΑΔόάʹؾ͖͍ͮ͢ • ॏ͍ΫΤϦʹؾ͖͍ͮ͢
'# ຊ൪%# ։ൃ%# ։ൃऀ .Z42- .Z42- NZTRMEVNQ ( # ։ൃऀͷ୭͔͕ؾ͕͍ͨ࣌ʹ
ຊ൪μϯϓσʔλ͔Β։ൃ DB Λߋ৽ ʢʹ1͘Β͍ʣ d
खಈߋ৽ํࣜͷ ݱߦͷσʔλͷΈͰൃੜ͢ΔΑ͏ͳΤϥʔʹؾ͖ͮʹ͍͘ ৽ணίϯςϯπʹؔ࿈ͨ͠ಈ࡞֬ೝ͕͠ʹ͍͘ ϢʔβͷମݧͱҟͳΔ
' ' ' # # # ຊ൪%# ։ൃ%# NBTUFS TMBWF
SFBE X SJUF ։ൃऀ .Z42- .Z42- ݱࡏ ։ൃऀৗʹຊ൪ͷ࠷৽σʔλ͕ೖͬͨDBͰ։ൃ
Ͳ͏Δͷ͔ ݒ೦ slave ʹॻ͖ࠐΜͩΒΩʔিಥͰ ϨϓϦέʔγϣϯΤϥʔʹͳΔͷͰʁ id ͕ຊ൪ͱͣΕͯ݁ہ͑ͳ͍σʔλʹͳΔͷͰʁ
JE OBNF ΧϨʔ ͔Β͋͛ ͡Ό͕ JE OBNF
ΧϨʔ ͔Β͋͛ ͡Ό͕ ͦ '# ຊ൪%# ։ൃ%# */4&35 ϨϓϦέʔγϣϯ ϥʔϝϯ ௨ৗɺslave ʹॻ͖ࠐΜͰ͠·͏ͱ AUTO_INCREMENT ͍ͯ͠Δ id ͕িಥ͢Δ
JE OBNF ΧϨʔ ͔Β͋͛ ͡Ό͕ JE OBNF
ΧϨʔ ͔Β͋͛ ͡Ό͕ ͦ ͏ͲΜ ੜᇙম͖ '# ຊ൪%# ։ൃ%# */4&35 ϨϓϦέʔγϣϯ AUTO_INCREMENT ʹڊେͳΦϑηοτΛઃఆ͢Δ͜ͱͰ ຊ൪ͱিಥ͠ʹ͘͘͢Δ ϥʔϝϯ
JE OBNF ΧϨʔ ͔Β͋͛ ͡Ό͕ JE OBNF
ΧϨʔ ͔Β͋͛ ͡Ό͕ ͦ ͏ͲΜ ੜᇙম͖ ຊ൪%# ։ൃ%# εςʔτϝϯτϕʔε ϨϓϦέʔγϣϯ ࠷৽ͷ݅Λʮমʯʹมߋ UPDATE recipes SET name=‘ম’ ORDER BY id DESC LIMIT 1 ম ম εςʔτϝϯτϕʔεϨϓϦέʔγϣϯͰ ։ൃ DB ͷσʔλ͕յΕ͍͢
JE OBNF ΧϨʔ ͔Β͋͛ ͡Ό͕ JE OBNF
ΧϨʔ ͔Β͋͛ ͡Ό͕ ͦ ͏ͲΜ ੜᇙম͖ ຊ൪%# ։ൃ%# ߦϕʔε ϨϓϦέʔγϣϯ ࠷৽ͷ݅Λʮমʯʹมߋ UPDATE recipes SET name=‘ম’ ORDER BY id DESC LIMIT 1 ম ম ߦϕʔεϨϓϦέʔγϣϯʹ͢Δ͜ͱͰ ։ൃ DB ͷσʔλ͕յΕʹ͘ͳΔ
ຊ൪%# ։ൃ%# ߦϕʔε ϨϓϦέʔγϣϯ εςʔτϝϯτϕʔε ϨϓϦέʔγϣϯ CJOMPH ม༻%# ߦϕʔεϨϓϦέʔγϣϯͰɺ όΠφϦϩάసૹྔ͕ڊେʹͳΓɺຊ൪ʹෛՙ͕͔͔ΔͨΊ
࣮ࡍʹதؒ DB Λ༻ҙ͠όΠφϦϩάΛม͍ͯ͠Δ
ϨϓϦέʔγϣϯఀࢭରࡦඞཁ ෆ߹ى͖ʹ͘͘Ͱ͖Δ͕ɺܾͯ͠ᘳͰͳ͍ͷͰ ϨϓϦ͕ΤϥʔͰࢭ·Δ͜ͱ͋Δ slave_skip_errors = ON Λઃఆͭͭ͠ɺ ఀࢭͨ͠Β skip ͯ͠࠶։͢ΔࢹεΫϦϓτΛӡ༻
ʢslave_skip_errors͚ͩͰ skip ͞Εͳ͍Τϥʔ͕͋ΔͨΊ…ʣ
' ' ' # # # ຊ൪%# ։ൃ%# NBTUFS TMBWF
SFBE X SJUF ։ൃऀ .Z42- .Z42- ։ൃऀৗʹຊ൪ͷ࠷৽σʔλ͕ೖͬͨDBͰ։ൃ
ຊ൪ڥͰ։ൃ͢Δ w
&BUZPVSPXOEPHGPPE ࣗͨͪͷαʔϏε͕ࣗͨͪϢʔβʹͳΔ͖ ♥
ඇϩάΠϯ ελοϑϢʔβ ͱͯ͠ϩάΠϯ ελοϑ͕ϩάΠϯ͢Δͱɺ ։ൃதͷϕʔλػೳ͕͍ͭ͘༗ޮʹͳΔ
ϕʔλػೳ ϦϦʔεൣғΛࢦఆͯ͠ެ։ ެ։ൣғͷྫ ελοϑͷΈʹެ։ ςετࢀՃϢʔβʹͷΈެ։ શମͷ10%ͷϢʔβʹެ։
αʔϏεͷՁΘͳ͍ͱ͔Βͳ͍ ͦͷՁͷԾઆਖ਼͔ͬͨ͠ͷ͔ʁ ຊ൪ʹϦϦʔε͠ͳ͍ͱɺϢʔβʹͬͯΒ͏͜ͱ͕Ͱ͖ͳ͍ ຊ൪ʹϦϦʔε͢Δʹຊ൪ͷ࣭ͷ ίʔυʢύϑΥʔϚϯεʣʹ্͛ͳ͚ΕͳΒͳ͍ʁ ˠඞཁͷͳ͍ػೳΛ࡞Γ͜ΜͰ͠·͏Մೳੑ͕͋Δ
ૣࣦ͘ഊΛ͢Δ ίʔυͷ࡞ΓࠐΈʹ࣌ؒΛ͔͚ΔΑΓɺ ૉૣ͘ެ։ͯ͠ԾઆΛݕূ͢ΔͨΊʹ࣌ؒΛ͏͖ *
$IBOLP ຊ൪ڥͰͷτϥΠˍΤϥʔΛࢧԉ͢Δ Rails ༻ gem Unit ͱ͍͏୯ҐͰطଘίʔυͷύονΛهड़ ࣭ͷ͍ίʔυΛຊ൪ʹ҆શʹग़ͤΔ IUUQTHJUIVCDPNDPPLQBEDIBOLP +
" # طଘͷίʔυ A ΛɺελοϑϢʔβͷΈʹରͯ͠ ϕʔλ൛ͷίʔυ B ʹஔ͖͍͑ͨ ͨͩ͠ɺB ݥతͳ࣮ͳͷͰɺྫ֎͕ൃੜ͢Δ͔͠Εͳ͍
طଘͷ$POUSPMMFSͷίʔυ ϕʔλ൛ͷίʔυ
ελοϑͳΒ# #Ͱྫ֎͕ى͖ͨΒ" ελοϑҎ֎ͳΒ" ϑϥάͰذ͍ͤͯ͘͞ͱίʔυ͕ԚΕ͍ͯ͘
ϕʔλػೳͷ6OJU طଘͷ$POUSPMMFSͷίʔυ " # Chanko ͰɺUnit ͱ͍͏ϑΝΠϧʹϕʔλػೳͷϩδοΫΛهड़͢Δ invoke ݅Λຬͨͨ͠߹ʹɺطଘϩδοΫ (A)
ͷΘΓʹ Unit (B) ͕࣮ߦ͞ΕΔ B ͕ྫ֎Λىͨ͜͠߹ɺݩͷ A ͕࣮ߦ͞ΕΔͨΊɺϢʔβʹΤϥʔ͕ฦΒͳ͍ JOWPLF݅
ແࣄʹՁ͕ೝΊΒΕͨΒ ຊ൪ͷ࣭ͷίʔυʹ্͛Δ طଘίʔυΛॻ͖͑ɺUnit ϑΝΠϧΛফ͢ ʢ௨শ Un-chankoʣ
$IBOLPͷӡ༻ঢ়گ 2011: Chanko ϦϦʔε + ಋೖ 2015: 200+ Chanko Units
• εςʔδϯά༻ͷαʔόଘࡏ͢Δ͕ɺར༻ස͍ • ։ൃதͷͷΛຊ൪ʹग़͢จԽ͕Ͱ͖͍ͯΔ
ςετ
ΫοΫύουͱ34QFD 1800+ files 21000+ examples (test cases) 7 min ,
5FTUTNFMMT ࣮ߦ͕͍࣌ؒ յΕ͍͢ʢίʔυͷมߋʹऑ͍ʣ Fail ͍͢͠ ࣮ߦڥͷґଘ -
3334QFD
. 3334QFD ͯ͘ɾ҆ͯ͘ɾ҆ఆͨ͠$* ෳͷ Spot Instance Λͬͯ RSpec Λฒྻ࣮ߦ ڧྗͳϑΥʔϧττϨϥϯε
IUUQTHJUIVCDPNDPPLQBESSSTQFD +
// / / TMBWF TMBWF XPSLFS XPSLFS XPSLFS ʜ /
ʜ ʜ ʜ / / / / NBTUFS ////ʜ
$*XPSLFSͷભҠ ۀ࣌ؒ֎ΛݮΒͯ͠ ίετݮ
&$4QPU*OTUBODF ͳΔ͘ϋΠεϖοΫͳΠϯελϯεΛ͍͍͕ͨߴՁ →Spot Instance ͷར༻ 0
&$4QPU*OTUBODF ʮ1࣌ؒ͋ͨΓͷ࠷େೖࡳՁ֨ʯΛࢦఆͯ͠ىಈ͢Δ ࢦఆͨ͠ʮ࠷େೖࡳՁ֨ʯΑΓ૬Ձ͕͚֨҆Εىಈ ىಈதʹ૬Ձ͕֨ʮ࠷େೖࡳՁ֨ʯΛ্ճͬͨ߹ɺ Πϯελϯεγϟοτμϯ͞ΕΔ ૬Ձ֨ OnDemand Ձ֨ΑΓߴ͘ͳΔ͜ͱ͋Δ ૬Ձ֨ AZ
͝ͱʹΑͬͯҟͳΔ
౦ژϦʔδϣϯͷͱ͋Δ";ʹ͓͚Δ 4QPU1SJDF DYMBSHF 0OEFNBOE I 3*ZBMMVQGSPOU I
DYMBSHF DYMBSHF DYMBSHF ˺ ˺ DYMBSHF DYMBSHF DYMBSHF ˺ ˺
Ұ൪ίετύϑΥʔϚϯε͕͍͍ ΠϯελϯεΛࣗಈతʹબ
ϑΥʔϧττϨϥϯε ͍͔ʹͯ͠GBJM͠ʹ͍͘$*ʹ͢Δ͔ ·Εʹࣦഊ͢ΔFYBNQMFʹରͯ͠ɿ ۭ͍͍ͯΔ worker Ͱࣗಈతʹ࠶࣮ߦ ҰͰ success ͢Ε success
ͱͯ͠ѻ͏ 4QPU*OTUBODFͷࣗಈγϟοτμϯʹରͯ͠ɿ ଞͷ worker Ͱࣗಈతʹ࠶࣮ߦ ผλΠϓͷΠϯελϯεΛىಈ͠࠶࣮ߦ
ׂΕ૭ཧ ݐͷ૭ׂ͕Ε͍ͯΔ֗ɺ࣏͕҆ѱԽ͢Δ ܰඍͳ൜ࡑΛపఈతʹऔΓక·Δ͜ͱͰ ڟѱ൜ࡑΛࢭͰ͖Δͱ͢Δڥ൜ࡑ্ֶͷཧ IUUQKBXJLJQFEJBPSHXJLJׂΕ૭ཧ -
$*͕ʮׂΕ૭ʯʹͳΒͳ͍Α͏ʹ ܰඍͳ͏ͪʹൃݟ͠ɺରॲ͢Δ • Ϗϧυ͕࣌ؒ͘ͳΔ • ͚ͯ͜Δςετͷ์ஔ • pending ঢ়ଶͳςετͷ์ஔ 1
௨ Fail ͨ͠ example ࡞ऀΛ blame ͯ͠νϟοτͰ௨ Fail ͬ͠ͺͳ͠ʹͤ͞ͳ͍
·Εʹ'BJM͢ΔςετΛݟ͚ͭΔ lBMMOJHIU$*z ۀ࣌ؒ֎ʹͣͬͱճ͠ଓ͚Δ CI success ͕͍ͱԿ͔͕͓͔͍͠
ඪ Ҏ Ҏ্͔͔ͬͨΒ௨ $*ͷϏϧυ࣌ؒΛࢹ
QFOEJOHʹͤͬ͞ͺͳ͠ͷςετͷ࡞ऀʹࣗಈ௨ IUUQTHJUIVCDPNDPPLQBEQFOEBYFT +
$*ӡ༻ͷ·ͱΊ • ༏Εͨ CI γεςϜΛ࡞Δ͜ͱΑΓɺ Ͳ͏ӡ༻͢Δ͔͕ॏཁ • Ϗϧυ࣌ؒɾ௨աɾίετͳͲͷ ࢦඪΛఆٛͯ͠ࢹ͠ɺ վળ͍ͯ͘͠
• ׂΕ૭ʹ͠ͳ͍ 2
σϓϩΠ
+ TVDDFTT -(5. QVMMSFRVFTU NFOUJPO EFQMPZ &$ (JU)VC &OUFSQSJTF #
EFWFMPQFS # SFWJFXFS $* +FOLJOT NFSHF
σϓϩΠϧʔϧʢҰ෦ʣ • CI Λύεͨ͠ϦϏδϣϯͷΈσϓϩΠͯ͠Α͍ • σϓϩΠίʔυΛ push ͨ͠։ൃऀ͕ࣗߦ͏ • Ӧۀ࣌ؒͷΈσϓϩΠՄೳ
• σϓϩΠޙ։ൃऀ͕ಈ࡞֬ೝ͠ɺ ෆ۩߹Λݟ͚ͭͨΒ͙͢ʹϩʔϧόοΫ͢Δ
σϓϩΠʹॏཁͳ͜ͱ • ଐਓతͰͳ͍͜ͱ • ਖ਼֬Ͱ͋Δ͜ͱ • ϩʔϧόοΫͰ͖Δ͜ͱ • ेʹ͍͜ͱ 3
ۙिؒͷσϓϩΠʹ͔͔ͬͨ࣌ؒ ฏۉඵ IPTUT
$BQJTUSBOP࣌ʢʙʣ capistrano2 + rsync_with_remote_cache
$BQJTUSBOPσϓϩΠͱ 1͔Βશʹ ssh + rsync σϓϩΠରϗετ͕૿͑Δͱ͘ͳ͍ͬͯ͘
σϓϩΠରϗετશʹTTI STZOD ˠσϓϩΠͷϘτϧωοΫʹ $BQJTUSBOP # / / / / /
/ / STZOD
.BNJZB
.BNJZB ϋΠεέʔϥϒϧͳߴσϓϩΠγεςϜ σϓϩΠରϗετΛ serf ͰΫϥελϦϯά Amazon S3 ܦ༝Ͱ Capistrano ޓͷσΟϨΫτϦߏ
IUUQTHJUIVCDPNTPSBINBNJZB +
/ $* UBSCBMM 4 $*͕௨ͬͨϦϏδϣϯͷίʔυ UBSCBMMͱͯ͠4ʹૹΒΕΔ
/ / / / / / / / $*͕௨ͬͨϦϏδϣϯͷUBSCBMM શ͕ৗʹࣗಈͰQVMM͍ͯ͠Δ
ʢ͜ͷ࣌Ͱ·ͩຊ൪ͷίʔυΓସΘ͍ͬͯͳ͍ʣ /
σϓϩΠͷࢦྩ4FSGΠϕϯτͱͯ͠(PTTJQϓϩτίϧͰ # !IVCPUEFQMPZQSPEVDUJPO
શͷϦϏδϣϯ͕ΓସΘΔ ʢϑΝΠϧ͋Β͔͡Ί͍ྃͯ͠ΔͨΊɺߴʹྃ͢Δʣ / / / / / / / /
/ / / / / / / / #
.BNJZBͷεέʔϥϏϦςΟ Mamiya σϓϩΠରϗετ૿Ճʹରͯ͠εέʔϥϒϧ ϗετ͕૿Ճͯ͠ʢ΄ͱΜͲʣ͘ͳΒͳ͍ ϑΝΠϧͷɿ S3 ͷεέʔϥϏϦςΟΛར༻ શͷϦϏδϣϯΓସ͑ࢦྩɿ Serf ΠϕϯτΛར༻
.BNJZBʹΑΔσϓϩΠ࣌ؒॖޮՌ ˠඵ DBQJTUSBOP NBNJZB DBQJTUSBOP NBNJZB
͓ΘΓʹ
⚒ ։ൃ σϓϩΠ ςετ
։ൃͷ͢͠͞Λอͭ ׂΕ૭Λ࡞Βͳ͍ͨΊʹɺऀͱࢦඪ͕ඞཁ 4
ʮ։ൃ͢͠͞ʯͷՁ • ։ൃ͔ΒσϓϩΠ·ͰͷαΠΫϧ͕ेʹ͚Εɺ ʮຊ൪ڥΛͬͨ։ൃʯ͕࣮ݱͰ͖Δ →Ϣʔβͱಉ͡ମݧͷதͰ։ൃ͢Δ • ։ൃ͢͠͞ʹࢿ͢ΔՁेʹ͋Δ • ݁Ռͱͯ͠։ൃ৫αʔϏε݈શͳঢ়ଶΛอͯΔ 'JO