Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最近使ったETL、ELTサービス(ツール)でデータ収集タスクについて考える / etl-elt...
Search
Miyamotok
September 24, 2020
Technology
1
3k
最近使ったETL、ELTサービス(ツール)でデータ収集タスクについて考える / etl-elt-datacollect-task
2020/9/24 #前向きデータ整備人
Miyamotok
September 24, 2020
Tweet
Share
More Decks by Miyamotok
See All by Miyamotok
Amazon Appflow で Salesforce to Snowflake へのデータローディング(EL)をやってみた / appflow-salesforce-snowflake-dataloading
miyamotok
0
590
[ELTツール×BigQuery] どのAPI使ってる?それぞれのAPIについて調べてみた / elttool-bigquery-which-api
miyamotok
0
560
ノーコード×分析基盤で複数データソースからのデータ収集を楽しようの話 / multi-saas-data-extract
miyamotok
0
380
Amazon Appflow で SaaS データ取込みを自動化してQuickSightで可視化してみた / appflow-salesforce-quicksight
miyamotok
0
5.7k
AWS Glue を試してみたら、カスタムコネクタのありがたさを感じたこと / awsglue-custom-connector
miyamotok
0
1.9k
_CDataSync_SaaSデータのバックアップ_.pdf
miyamotok
0
1.2k
Other Decks in Technology
See All in Technology
Railsの限界を超えろ!「家族アルバム みてね」の画像・動画の大規模アップロードを支えるアーキテクチャの変遷
ojima_h
4
520
Webの技術とガジェットで那須の子ども達にワクワクを! / IoTLT_20250720
you
PRO
0
130
【CEDEC2025】LLMを活用したゲーム開発支援と、生成AIの利活用を進める組織的な取り組み
cygames
PRO
1
1.7k
増え続ける脆弱性に立ち向かう: 事前対策と優先度づけによる 持続可能な脆弱性管理 / Confronting the Rise of Vulnerabilities: Sustainable Management Through Proactive Measures and Prioritization
nttcom
1
220
KCD Lima: eBee in Peru!
lizrice
0
110
「AI駆動開発」のボトルネック『言語化』を効率化するには
taniiicom
1
220
モバイルゲームの開発を支える基盤の歩み ~再現性のある開発ラインを量産する秘訣~
qualiarts
0
630
OpenTelemetry の Log を使いこなそう
biwashi
5
1.1k
Power Automate のパフォーマンス改善レシピ / Power Automate Performance Improvement Recipes
karamem0
0
270
クマ×共生 HACKATHON - 熊対策を『特別な行動」から「生活の一部」に -
pharaohkj
0
200
LLMでAI-OCR、実際どうなの? / llm_ai_ocr_layerx_bet_ai_day_lt
sbrf248
0
170
大規模組織にAIエージェントを迅速に導入するためのセキュリティの勘所 / AI agents for large-scale organizations
i35_267
6
330
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Designing Experiences People Love
moore
142
24k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
How STYLIGHT went responsive
nonsquared
100
5.7k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Designing for Performance
lara
610
69k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
GitHub's CSS Performance
jonrohan
1031
460k
Docker and Python
trallard
45
3.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
Transcript
© 2020 CData Software Japan, LLC | www.cdata.com/jp 最近使ったETL、ELTサービス(ツール)で データ収集タスクについて考える
2020/09/24 CData Software Japan 宮本 #前向きデータ整備人
© 2020 CData Software Japan, LLC | www.cdata.com/jp 自己紹介 CData
Software Japan 合同会社 宮本 航太(@miyamon44) エンジニア ・主に製品サポートと開発、他社サービスとの検証 さまざまなクラウドサービス向けのODBCドライバーやJDBCド ライバーなどを提供してます。 この製品でドライバーが使える!?などあればまずはご連絡いた だけると嬉しいです!
© 2020 CData Software Japan, LLC | www.cdata.com/jp 本日お話すること 1.
データ収集・整備でコストが掛かる理由 2. ETL/ELTのそれぞれの役割について振り返る 3. 最近使ったすぐに使えるETL/ELTについて
© 2020 CData Software Japan, LLC | www.cdata.com/jp データ活用に対する理想と現実 データは次世代の石油と呼ばれたり
宝の山と呼ばれたり・・・ 理想 現実 ゴミになることが多かったり・・・
© 2020 CData Software Japan, LLC | www.cdata.com/jp 宝は掘らないと出てこない データは使えるようにしないとインサイトは出てこない
出てくる宝の価値<掘るコスト
© 2020 CData Software Japan, LLC | www.cdata.com/jp なんで掘るコストの方が大きいの?
© 2020 CData Software Japan, LLC | www.cdata.com/jp 「データ準備80%、データ分析20%」と言われている →全体の中でもデータ整備人のタスクの比率が多いのが現状
データを分析・活用するまでが長い データ整備の人のタスク
© 2020 CData Software Japan, LLC | www.cdata.com/jp なんでデータ収集と加工で コストが掛かるの?
© 2020 CData Software Japan, LLC | www.cdata.com/jp コスト要因(データ量とデータソース数) ←
データ量が単純に増加 世界のデータ量は2018年の33ゼタバイトか ら2025年に175ゼタバイトに! 1企業で考えても扱うデータ量は増加してい る。 データ量が年々爆発的に増加しすぎて、デー タ整備に時間が掛かる 1企業で利用するSaaSの数 → USでの2017年時の1企業におけるSaaS利用数。 SaaSが提供してるAPIを理解して接続して・・・を利用中のSaaSの数分 だけ対応・・・ APIごとにRESTとかSOAPとか接続規格違うし、集計とかページングと かバルク処理とか、一から調べてくのエンジニアでも大変すぎる。 データ整備人が手組でここまでやり始めたら高負荷間違いなし
© 2020 CData Software Japan, LLC | www.cdata.com/jp コスト要因(半・非構造化データの増加) 「非(半)構造化データは企業データの80%以上を占めており、
年間55%および65%の割合で成長している」 構造化データ、半構造化データ、非 構造化データとか・・・えっ? データ形式がバラバラなので、結局 はデータ整備やデータ収集で多くの 時間を割いてしまう
© 2020 CData Software Japan, LLC | www.cdata.com/jp データ収集って必要な作業だけど目的ではない データドリブンな意思決定のためにデータを活用している
収集・加工部分の作業にコストが掛かって大変なら、 迷わずETL、ELTサービス・ツールを試してみる
© 2020 CData Software Japan, LLC | www.cdata.com/jp ETL/ELTってなんだっけ?
© 2020 CData Software Japan, LLC | www.cdata.com/jp ETL(Extract Transform
Load)
© 2020 CData Software Japan, LLC | www.cdata.com/jp ELT(Extract Load
Transform)
© 2020 CData Software Japan, LLC | www.cdata.com/jp ETL と
ELT の比較 ETL ELT 処理方式 元データの変換をETL起動インスタンスで実 行し、変換したデータをDWHに転送 ターゲットDBで必要があれば変換。 元データはそのままDWHに転送 集計 データ量が増えると複雑な集計等は時間が掛 かる。事前のクレンジングなどをGUIで調整 できるのは◎ ターゲットの能力次第で大量データでも迅速 に処理が可能(BigQueryとか)。 SQLで集計や変換を行う。 ハード要件 オンサイトETLではハード面に費用が掛かり がち 受け取ったデータをそのまま流すので特別な ハードは不用。SaaS型が多かったり。 ⇒クラウドベースだと処理速度やハード面の 不安がクリアできそう ⇒複雑な変換処理を必要とする場合は不向き。 けどDBにまず連携したい場合は◎
© 2020 CData Software Japan, LLC | www.cdata.com/jp データ連携ツール選定時のポイント:接続先>データ加工 https://consult.nikkeibp.co.jp/info/news/2019/0902df/
データ加工= ETL/ELTのT(変換部分)
© 2020 CData Software Japan, LLC | www.cdata.com/jp とは言え、 現実はツールを試すまでにも時間が
掛かって導入までいかない・・・
© 2020 CData Software Japan, LLC | www.cdata.com/jp ”最近使った” すぐ始められるETL/ELT
サービス・ツール ELT:Sticth ETL:Google Cloud Data Fusion ELT:CDataSync
© 2020 CData Software Japan, LLC | www.cdata.com/jp ETL:Google Cloud
Data Fusion • GCPのフルマネージドなETLサービス • GUI で全て設定可能 • $1.80 / 1時間。毎月120Hは無料 けどインスタンス停止中でも課金されます とりあえずで試す場合はインスタンスの放置は厳禁・・ ➢ ETLなので変換や接続部分のコネクタが豊富 (Speech to Text とかもある) ➢ GUI で設定が完結するので、アドホックに試す 分にはお手軽な感じ ➢ サードパーティのJDBCを利用できるのでCData JDBC Driver も使えた!
© 2020 CData Software Japan, LLC | www.cdata.com/jp • SaaS
型のELTサービスですぐに連携ジ ョブを実行できる • GUI で全て設定可能 • 500万件まで無料 有料になってました・・・ 100ドル/月 (500万件まで) ELT:Stitch ➢ SaaS 型なのでアカウントさえ作ってしまえばす ぐに使える ➢ データソースからまるっとロードするタイプ。 覚えることが少なく始めるまでの障壁が少ない ➢ データソースが豊富
© 2020 CData Software Japan, LLC | www.cdata.com/jp • インストール型(AWS
AMIあり) • オンプレでもクラウド上でも利用可能 • FREEプランあり※条件付き (AirTable,SendGrid,ZohoCRM,GShee tなど) ELT:CDataSync ➢ WEBサーバが同梱されてるので、インストール 直後からすぐに使える ➢ オンプレ内での閉じた環境内でも利用可能 ➢ データソースに加えて連携先も主要RDBやS3、 Accessなど充実
© 2020 CData Software Japan, LLC | www.cdata.com/jp Sync+ BigQuery
を使った ELT モデルのデータ分析基盤
© 2020 CData Software Japan, LLC | www.cdata.com/jp • エンジニアやデータ整備人の負荷を軽減させるなら、
ツールやサービスを利用するのは全然あり • データ分析基盤のアーキテクチャを考える際、ETL、ELTどっちの方式 (どこで変換させるか)を採用するかもポイント • 検討しすぎるよりはまずはツールやサービスを使って、さくっとデー タ連携から可視化までをミニマムで試してみるのは◎ まとめ
© 2020 CData Software Japan, LLC | www.cdata.com/jp • CDataSync
ハンズオン 今日紹介したELTツールのCDataSync のハン ズオンを、クラウドエースさん主催の「OPEN DX 2020」というイベントで明日9/25 15:00-16:00で開催します。 無料でご参加いただけます! 宣伝
© 2020 CData Software Japan, LLC | www.cdata.com/jp Thank you!!