Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習イントロダクション/machine-learning-lecture-introduc...
Search
monochromegane
July 13, 2020
Technology
0
8.3k
機械学習イントロダクション/machine-learning-lecture-introduction
GMOペパボ新卒研修2020 機械学習入門 補足資料#01
monochromegane
July 13, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
150
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
540
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
280
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
1
640
Go言語でMac GPUプログラミング
monochromegane
1
390
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
840
迅速な学習機構を用いて逐次適応性を損なうことなく非線形性を扱う文脈付き多腕バンディット手法/extreme_neural_linear_bandits
monochromegane
0
1.9k
再帰化への認知的転回/the-turn-to-recursive-system
monochromegane
0
720
仮想的な探索を用いて文脈や時間の経過による番狂わせにも迅速に追従する多腕バンディット手法/wi2_lkf_bandits
monochromegane
0
660
Other Decks in Technology
See All in Technology
AWS Lambdaと歩んだ“サーバーレス”と今後 #lambda_10years
yoshidashingo
1
170
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
170
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.8k
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
240
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
410
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
110
ISUCONに強くなるかもしれない日々の過ごしかた/Findy ISUCON 2024-11-14
fujiwara3
8
870
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
B2B SaaSから見た最近のC#/.NETの進化
sansantech
PRO
0
730
Lambdaと地方とコミュニティ
miu_crescent
2
370
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
380
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
Featured
See All Featured
RailsConf 2023
tenderlove
29
900
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
What's new in Ruby 2.0
geeforr
343
31k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
329
21k
The Pragmatic Product Professional
lauravandoore
31
6.3k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Statistics for Hackers
jakevdp
796
220k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Designing for Performance
lara
604
68k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
We Have a Design System, Now What?
morganepeng
50
7.2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
Transcript
1 ペパボ研究所 三宅悠介 新卒研修 機械学習入門 補足資料#01 (2020/07/12 Update) 機械学習 イントロダクション
2 2 機械学習とは何か そして、何ではないか
3 プログラムが、データから知識を学習すること、また それを用いてタスクを実行する手法のこと 3 機械学習とは 機械学習とは何か
4 入力から出力を推測したい やりたいこと 4
5 入力から出力を推測したい やりたいこと 5 入力から出力を予測 する関数を考える
6 入力から出力を推測したい やりたいこと 6 切片w0と傾きw1を持 つ一次関数で表す
7 入力から出力を予測したい やりたくないこと 7 ② w0とw1を発見させるプロ グラムを書く ① w0とw1を自分で決める
8 入力から出力を予測したい やりたくないこと 8 ② w0とw1を発見させるプロ グラムを書く ① w0とw1を自分で決める ❌
9 9 データから学習する、とは 機械学習とは何か プログラムによって 入力に対して 望ましい出力を返すよう 数式のパラメータを調整すること
10 ① データの生成規則をモデルとして記述する 10 データから学習する、ためには 機械学習とは何か 入出力(変数) 数式の構造 数式のパラメータ
11 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する 11 データから学習する、ためには 機械学習とは何か
12 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 12 データから学習する、ためには 機械学習とは何か
13 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 13
データから学習する、ためには 機械学習とは何か
14 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 14
データから学習する、ためには 機械学習とは何か
15 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 ⑤
モデルを用いてタスクを実行する 15 データから学習する、ためには 機械学習とは何か
16 16 機械学習のタスク 何のために学習するのか
17 プログラムが、データから知識を学習すること、また それを用いてタスクを実行する手法のこと 17 機械学習とは(再掲) 機械学習とは何か
18 機械学習では、モデルが前提と するデータの生成規則におけ る、未知のデータに対してどれ だけそのタスクをよくこなせるか が求められる。 18 モデルとタスクと汎化 機械学習とは何か
19 19 回帰 (Regression) 代表的な機械学習のタスク 入力から出力を予測する問題設定。 出力は連続値として得られる。 入出力の関係性は、訓練データ(ラベル付きの例) から学習する(教師あり学習)
例)気温から売り上げを予測、土地の特徴から家屋の価格を予測
20 20 分類 (Classification) 代表的な機械学習のタスク 入力から出力を予測する問題設定。 出力は離散値(有限集合の要素)で得られる。 入出力の関係性は、訓練データ(ラベル付きの例) から学習する(教師あり学習)
例)スパムメール分類、手書き文字認識
21 21 クラスタリング (Clustering) 代表的な機械学習のタスク 入力をいくつかのクラスタに分割する問題設定。 クラスタは、入力データ自身の性質から学習する (教師なし学習) 例)商品特徴による動的なカテゴリ生成
22 機械学習のタスクと手法 22 機械学習のタスク 機械学習の手法(モデル、アルゴリズム) 教師あり 分類 ロジスティック回帰 SVM 決定木
ニューラルネットワークなど 回帰 線形回帰 リッジ回帰 決定木 ニューラルネットワークなど 教師なし クラスタリング k-meansなど 次元削減 PCAなど など -
23 23 なぜ機械学習を学ぶのか
24 Webサービスの利用者の行動(や意図)はログをはじめ とするデータとして観測できる。 データの背景を記述し学習する機械学習の手法を習 得することで、個々の利用者の振る舞いに適応する データ駆動なシステムを実現し、エンジニアリングに よってファンを増やすことにつながる。 24 「ファンを増やす」 なぜ機械学習を学ぶのか