Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習イントロダクション/machine-learning-lecture-introduc...
Search
monochromegane
July 13, 2020
Technology
0
8.6k
機械学習イントロダクション/machine-learning-lecture-introduction
GMOペパボ新卒研修2020 機械学習入門 補足資料#01
monochromegane
July 13, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
280
ベクトル検索システムの気持ち
monochromegane
33
11k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
180
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
260
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
920
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
560
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
960
Go言語でMac GPUプログラミング
monochromegane
1
620
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
1.1k
Other Decks in Technology
See All in Technology
AWS アーキテクチャ作図入門/aws-architecture-diagram-101
ma2shita
29
11k
Liquid Glass革新とSwiftUI/UIKit進化
fumiyasac0921
0
210
Node-RED × MCP 勉強会 vol.1
1ftseabass
PRO
0
140
Postman AI エージェントビルダー最新情報
nagix
0
110
急成長を支える基盤作り〜地道な改善からコツコツと〜 #cre_meetup
stefafafan
0
120
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
2
1k
ひとり情シスなCTOがLLMと始めるオペレーション最適化 / CTO's LLM-Powered Ops
yamitzky
0
430
Github Copilot エージェントモードで試してみた
ochtum
0
100
VISITS_AIIoTビジネス共創ラボ登壇資料.pdf
iotcomjpadmin
0
160
Witchcraft for Memory
pocke
1
310
Oracle Cloud Infrastructure:2025年6月度サービス・アップデート
oracle4engineer
PRO
2
240
Amazon ECS & AWS Fargate 運用アーキテクチャ2025 / Amazon ECS and AWS Fargate Ops Architecture 2025
iselegant
16
5.5k
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
How STYLIGHT went responsive
nonsquared
100
5.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Practical Orchestrator
shlominoach
188
11k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Unsuck your backbone
ammeep
671
58k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
A designer walks into a library…
pauljervisheath
207
24k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Transcript
1 ペパボ研究所 三宅悠介 新卒研修 機械学習入門 補足資料#01 (2020/07/12 Update) 機械学習 イントロダクション
2 2 機械学習とは何か そして、何ではないか
3 プログラムが、データから知識を学習すること、また それを用いてタスクを実行する手法のこと 3 機械学習とは 機械学習とは何か
4 入力から出力を推測したい やりたいこと 4
5 入力から出力を推測したい やりたいこと 5 入力から出力を予測 する関数を考える
6 入力から出力を推測したい やりたいこと 6 切片w0と傾きw1を持 つ一次関数で表す
7 入力から出力を予測したい やりたくないこと 7 ② w0とw1を発見させるプロ グラムを書く ① w0とw1を自分で決める
8 入力から出力を予測したい やりたくないこと 8 ② w0とw1を発見させるプロ グラムを書く ① w0とw1を自分で決める ❌
9 9 データから学習する、とは 機械学習とは何か プログラムによって 入力に対して 望ましい出力を返すよう 数式のパラメータを調整すること
10 ① データの生成規則をモデルとして記述する 10 データから学習する、ためには 機械学習とは何か 入出力(変数) 数式の構造 数式のパラメータ
11 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する 11 データから学習する、ためには 機械学習とは何か
12 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 12 データから学習する、ためには 機械学習とは何か
13 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 13
データから学習する、ためには 機械学習とは何か
14 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 14
データから学習する、ためには 機械学習とは何か
15 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 ⑤
モデルを用いてタスクを実行する 15 データから学習する、ためには 機械学習とは何か
16 16 機械学習のタスク 何のために学習するのか
17 プログラムが、データから知識を学習すること、また それを用いてタスクを実行する手法のこと 17 機械学習とは(再掲) 機械学習とは何か
18 機械学習では、モデルが前提と するデータの生成規則におけ る、未知のデータに対してどれ だけそのタスクをよくこなせるか が求められる。 18 モデルとタスクと汎化 機械学習とは何か
19 19 回帰 (Regression) 代表的な機械学習のタスク 入力から出力を予測する問題設定。 出力は連続値として得られる。 入出力の関係性は、訓練データ(ラベル付きの例) から学習する(教師あり学習)
例)気温から売り上げを予測、土地の特徴から家屋の価格を予測
20 20 分類 (Classification) 代表的な機械学習のタスク 入力から出力を予測する問題設定。 出力は離散値(有限集合の要素)で得られる。 入出力の関係性は、訓練データ(ラベル付きの例) から学習する(教師あり学習)
例)スパムメール分類、手書き文字認識
21 21 クラスタリング (Clustering) 代表的な機械学習のタスク 入力をいくつかのクラスタに分割する問題設定。 クラスタは、入力データ自身の性質から学習する (教師なし学習) 例)商品特徴による動的なカテゴリ生成
22 機械学習のタスクと手法 22 機械学習のタスク 機械学習の手法(モデル、アルゴリズム) 教師あり 分類 ロジスティック回帰 SVM 決定木
ニューラルネットワークなど 回帰 線形回帰 リッジ回帰 決定木 ニューラルネットワークなど 教師なし クラスタリング k-meansなど 次元削減 PCAなど など -
23 23 なぜ機械学習を学ぶのか
24 Webサービスの利用者の行動(や意図)はログをはじめ とするデータとして観測できる。 データの背景を記述し学習する機械学習の手法を習 得することで、個々の利用者の振る舞いに適応する データ駆動なシステムを実現し、エンジニアリングに よってファンを増やすことにつながる。 24 「ファンを増やす」 なぜ機械学習を学ぶのか