Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
機械学習イントロダクション/machine-learning-lecture-introduction
monochromegane
July 13, 2020
Technology
0
6.9k
機械学習イントロダクション/machine-learning-lecture-introduction
GMOペパボ新卒研修2020 機械学習入門 補足資料#01
monochromegane
July 13, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
迅速な学習機構を用いて逐次適応性を損なうことなく非線形性を扱う文脈付き多腕バンディット手法/extreme_neural_linear_bandits
monochromegane
0
220
再帰化への認知的転回/the-turn-to-recursive-system
monochromegane
0
310
仮想的な探索を用いて文脈や時間の経過による番狂わせにも迅速に追従する多腕バンディット手法/wi2_lkf_bandits
monochromegane
0
320
Synapse: 文脈と時間経過に応じて推薦手法の選択を最適化するメタ推薦システム/smash21-synapse
monochromegane
0
230
なめらかなシステムと運用維持の未来/dicomo2021-coherently-fittable-system
monochromegane
1
9.4k
go:embedでExplainable Binaryを作る/fukoukago17_go_code_embedding
monochromegane
2
180
非定常な多腕バンディット問題において効率的に変化を察知する方式の検討/wsa8_predictive_exploratory_model
monochromegane
0
2.2k
変化検出と要約データ構造を用いた利用者の嗜好の変化に迅速に追従する多腕バンディット手法/iots2020-adaptive-linear-mab
monochromegane
0
620
嗜好伝達コミュニケーションの効率化を目指した伝達方式の検討/wsa7_local_preference
monochromegane
0
2.6k
Other Decks in Technology
See All in Technology
20230121_データ分析系コミュニティ_サテライト企画
doradora09
0
520
02_プロトタイピングの進め方
kouzoukaikaku
0
180
もし本番ネットワークをまるごと仮想環境に”コピー”できたらうれしいですか? / janog51
corestate55
0
350
Multi-Cloud Gatewayでデータを統治せよ!/ Data Federation with MCG
tutsunom
1
200
OCI DevOps 概要 / OCI DevOps overview
oracle4engineer
PRO
0
480
FlexScan HD2452Wの 後継を探して
tring
0
6.1k
WebLogic Server for OCI 概要
oracle4engineer
PRO
3
870
Oktaの管理者権限を適切に移譲してみた
shimosyan
2
260
plotlyで動くグラフを作る
kosshi
0
750
DNS権威サーバのクラウドサービス向けに行われた攻撃および対策 / DNS Pseudo-Random Subdomain Attack and mitigations
kazeburo
5
1.2k
創業1年目のスタートアップでAWSコストを抑えるために取り組んでいること / How to Keep AWS Costs Down at a Startup
yuj1osm
3
2k
2年で10→70人へ! スタートアップの 情報セキュリティ課題と施策
miekobayashi
1
300
Featured
See All Featured
Embracing the Ebb and Flow
colly
75
3.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
7
570
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
270
12k
GitHub's CSS Performance
jonrohan
1020
430k
Web Components: a chance to create the future
zenorocha
304
40k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
239
19k
What the flash - Photography Introduction
edds
64
10k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
182
15k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
236
1.1M
Art, The Web, and Tiny UX
lynnandtonic
284
18k
Code Reviewing Like a Champion
maltzj
508
38k
VelocityConf: Rendering Performance Case Studies
addyosmani
317
22k
Transcript
1 ペパボ研究所 三宅悠介 新卒研修 機械学習入門 補足資料#01 (2020/07/12 Update) 機械学習 イントロダクション
2 2 機械学習とは何か そして、何ではないか
3 プログラムが、データから知識を学習すること、また それを用いてタスクを実行する手法のこと 3 機械学習とは 機械学習とは何か
4 入力から出力を推測したい やりたいこと 4
5 入力から出力を推測したい やりたいこと 5 入力から出力を予測 する関数を考える
6 入力から出力を推測したい やりたいこと 6 切片w0と傾きw1を持 つ一次関数で表す
7 入力から出力を予測したい やりたくないこと 7 ② w0とw1を発見させるプロ グラムを書く ① w0とw1を自分で決める
8 入力から出力を予測したい やりたくないこと 8 ② w0とw1を発見させるプロ グラムを書く ① w0とw1を自分で決める ❌
9 9 データから学習する、とは 機械学習とは何か プログラムによって 入力に対して 望ましい出力を返すよう 数式のパラメータを調整すること
10 ① データの生成規則をモデルとして記述する 10 データから学習する、ためには 機械学習とは何か 入出力(変数) 数式の構造 数式のパラメータ
11 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する 11 データから学習する、ためには 機械学習とは何か
12 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 12 データから学習する、ためには 機械学習とは何か
13 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 13
データから学習する、ためには 機械学習とは何か
14 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 14
データから学習する、ためには 機械学習とは何か
15 ① データの生成規則をモデルとして記述する ② モデルの良し悪しを定式化する ③ 現在のパラメータの良し悪しを②式で評価 ④ ③の評価に基づきパラメータを調整 ⑤
モデルを用いてタスクを実行する 15 データから学習する、ためには 機械学習とは何か
16 16 機械学習のタスク 何のために学習するのか
17 プログラムが、データから知識を学習すること、また それを用いてタスクを実行する手法のこと 17 機械学習とは(再掲) 機械学習とは何か
18 機械学習では、モデルが前提と するデータの生成規則におけ る、未知のデータに対してどれ だけそのタスクをよくこなせるか が求められる。 18 モデルとタスクと汎化 機械学習とは何か
19 19 回帰 (Regression) 代表的な機械学習のタスク 入力から出力を予測する問題設定。 出力は連続値として得られる。 入出力の関係性は、訓練データ(ラベル付きの例) から学習する(教師あり学習)
例)気温から売り上げを予測、土地の特徴から家屋の価格を予測
20 20 分類 (Classification) 代表的な機械学習のタスク 入力から出力を予測する問題設定。 出力は離散値(有限集合の要素)で得られる。 入出力の関係性は、訓練データ(ラベル付きの例) から学習する(教師あり学習)
例)スパムメール分類、手書き文字認識
21 21 クラスタリング (Clustering) 代表的な機械学習のタスク 入力をいくつかのクラスタに分割する問題設定。 クラスタは、入力データ自身の性質から学習する (教師なし学習) 例)商品特徴による動的なカテゴリ生成
22 機械学習のタスクと手法 22 機械学習のタスク 機械学習の手法(モデル、アルゴリズム) 教師あり 分類 ロジスティック回帰 SVM 決定木
ニューラルネットワークなど 回帰 線形回帰 リッジ回帰 決定木 ニューラルネットワークなど 教師なし クラスタリング k-meansなど 次元削減 PCAなど など -
23 23 なぜ機械学習を学ぶのか
24 Webサービスの利用者の行動(や意図)はログをはじめ とするデータとして観測できる。 データの背景を記述し学習する機械学習の手法を習 得することで、個々の利用者の振る舞いに適応する データ駆動なシステムを実現し、エンジニアリングに よってファンを増やすことにつながる。 24 「ファンを増やす」 なぜ機械学習を学ぶのか