Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The New Genomics
Search
Matt Wood
October 02, 2012
Science
3
14k
The New Genomics
The value of reproducing, reusing and remixing scientific research. Slides from Strata London.
Matt Wood
October 02, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
440
A Platform for Big Data
mza
6
790
The Data Lifecycle
mza
5
540
Provision Throughput Like a Boss
mza
0
490
Impact of Cloud Computing: Life Sciences
mza
2
890
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1.1k
From Analytics to Intelligence: Amazon Redshift
mza
9
1k
Scaling Science
mza
3
540
Other Decks in Science
See All in Science
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
2025-05-31-pycon_italia
sofievl
0
110
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
140
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
140
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
データマイニング - コミュニティ発見
trycycle
PRO
0
180
Ignite の1年間の軌跡
ktombow
0
180
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
250
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1k
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
290
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
225
10k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Building Adaptive Systems
keathley
44
2.9k
Why Our Code Smells
bkeepers
PRO
340
57k
Into the Great Unknown - MozCon
thekraken
40
2.2k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
720
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Transcript
The New Genomics
[email protected]
Dr. Matt Wood
Hello
Hello
Data
DNA
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
+0.25 Chromosome 15 : rs2472297
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
Chromosome 1 : rs4481887
I know this, because...
None
A T C G G T C C A G
G
A T C G G T C C A G
G A G C C A G G U C C Transcription
A T C G G T C C A G
G A G C C A G G U C C Translation Ser Glu Val Transcription
None
None
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
+0.25 Chromosome 15 : rs2472297
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
Chromosome 1 : rs4481887
I know all that, because...
Human Genome Project
40 species ensembl.org
Compare species
Biological importance
Step change
Less time. Lower cost.
None
None
Compare individuals
None
Data generation costs are falling (pretty much everywhere)
Sequencing challenge X
Amazona vittata
Analytics challenge
Lots of data, Lots of uses, Lots of users, Lots
of locations
Cost
Analytics challenge X
Accessibility challenge
The New Genomics
Graceful. Beautiful.
Impossible to re-create
Snowflake Science
Reproducibility
Reproducibility scales science
Reproduce. Reuse. Remix.
Value++
None
How do we get from here to there? 5PRINCIPLES REPRODUCIBILITY
OF
1. Use the gravity of data 5 PRINCIPLES REPRODUCIBILITY OF
Increasingly large data collections
1000 Genomes Project: 200Tb
Challenging to obtain and manage
Expensive to experiment
Large barrier to reproducibility
Data size will increase
Data integration will increase
Move data to the users
Move data to the users X
Move tools to the data
Place data where it can consumed by tools
Place tools where they can access data
None
None
None
Canonical source
None
More data, more users, more uses, more locations
Cost and complexity
Cost and complexity kill reproducibility
Utility computing
Availability
Intel Xeon E5 NVIDIA Tesla GPUs
90 - 120k IOPS on SSDs
Pay-as-you-go
100% Reserved capacity
100% Reserved capacity On-demand
100% Reserved capacity On-demand
Spot instances
Name-your-price
None
2. Ease of use is a pre-requisite 5 PRINCIPLES REPRODUCIBILITY
OF
http://headrush.typepad.com/creating_passionate_users/2005/10/getting_users_p.html
Help overcome the suck threshold
Easy to embrace and extend
Choose the right abstraction for the user
$ ec2-run-instances
$ starcluster start
None
None
Package and automate
Package and automate Amazon machine images, VM import
Package and automate Amazon machine images, VM import Deployment scripts,
CloudFormation, Chef, Puppet
Expert-as-a-service
None
None
1000 Genomes Cloud BioLinux
None
Your HiSeq data Illumina BaseSpace
DNA and RNA sequences Genomespace, Broad Institute at MIT
Data as a programmable resource
3. Reuse is as important as reproduction 5 PRINCIPLES REPRODUCIBILITY
OF
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Infonauts are hackers
They have their own way of working
The ‘Big Red Button’
Fire and forget reproduction is a good first step, but
limits longer term value.
Monolithic, one-stop-shop
Work well for intended purpose
Challenging to install, dependency heavy
Inflexible
Embrace infonauts as hackers
Small things. Loosely coupled.
Easier to reuse
Easier to integrate
Scale out
Cancer drug discovery: 50,000 cores < $1000 an hour Schrödinger
and CycleServer
4. Build for collaboration 5 PRINCIPLES REPRODUCIBILITY OF
Workflows are memes
Reproduction is just the first step
Bill of materials: code, data, configuration, infrastructure
Full definition for reproduction
Utility computing provides a playground for data science
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Package, automate, contribute.
Utility platform provides scale for production runs
5. Provenance is a first class object 5 PRINCIPLES REPRODUCIBILITY
OF
Versioning becomes really important
Especially in an active community
Doubly so with loosely coupled tools
Provenance metadata is a first class entity
Distributed provenance
5PRINCIPLES REPRODUCIBILITY OF
Remove constraints 5PRINCIPLES REPRODUCIBILITY OF
Accelerate science 5PRINCIPLES REPRODUCIBILITY OF
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
+0.25 Chromosome 15 : rs2472297
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
Chromosome 1 : rs4481887
Thank you aws.amazon.com @mza
[email protected]