Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
因子型を使いこなそう@fukuoka.R#09
Search
nonki1974
September 09, 2017
Technology
0
190
因子型を使いこなそう@fukuoka.R#09
fukuoka.R #09 (2017/09/09) の発表資料
nonki1974
September 09, 2017
Tweet
Share
More Decks by nonki1974
See All by nonki1974
GTFS with Tidytransit package
nonki1974
0
280
TokyoR#84_Rexams
nonki1974
0
190
都道府県別焼き鳥屋ランキングの作成
nonki1974
1
830
Introduction to R
nonki1974
0
320
Introduction to dplyr
nonki1974
0
430
Introduction to ggplot2
nonki1974
1
480
Analyzing PSB tracks with R
nonki1974
0
570
introduction to fukuoka.R @ Fukuoka.LT
nonki1974
0
57
所要時間のヒートマップを作成する
nonki1974
0
480
Other Decks in Technology
See All in Technology
12 Days of OpenAIから読み解く、生成AI 2025年のトレンド
shunsukeono_am
0
1k
rootful・rootless・privilegedコンテナの違い/rootful_rootless_privileged_container_difference
moz_sec_
0
110
Qiita埋め込み用スライド
naoki_0531
0
5.5k
3年でバックエンドエンジニアが5倍に増えても破綻しなかったアーキテクチャ そして、これから / Software architecture that scales even with a 5x increase in backend engineers in 3 years
euglena1215
11
4.3k
PHPerのための計算量入門/Complexity101 for PHPer
hanhan1978
6
1.5k
DUSt3R, MASt3R, MASt3R-SfM にみる3D基盤モデル
spatial_ai_network
3
510
Opcodeを読んでいたら何故かphp-srcを読んでいた話
murashotaro
0
370
ネットワーク可視化の世界
likr
7
5.7k
20240522 - 躍遷創作理念 @ PicCollage Workshop
dpys
0
310
Denoで作るチーム開発生産性向上のためのCLIツール
sansantech
PRO
0
140
AI×医用画像の現状と可能性_2024年版/AI×medical_imaging_in_japan_2024
tdys13
0
1.2k
10年もののバグを退治した話
n_seki
0
140
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Agile that works and the tools we love
rasmusluckow
328
21k
Optimizing for Happiness
mojombo
376
70k
Code Reviewing Like a Champion
maltzj
521
39k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Side Projects
sachag
452
42k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
490
Fireside Chat
paigeccino
34
3.1k
Transcript
因子型を使いこなそう! @nonki1974 2017/09/09 fukuoka.R#09
データ型 データ構造 データ型 ベクトル 行列・配列 リスト データフレーム 整数型 実数型 論理型
文字列 因子型
データの種類(尺度水準) 名義尺度 順序尺度 間隔尺度 比例尺度 同じものには同じ値(記号) 異なるものには異なる値(記号) 名義尺度+順序関係 値の間隔(差)に意味がある 10℃
→ 30℃ 20℃上昇した! 温度が3倍になった! 間隔尺度+値の比に意味がある
変数の種類 質的変数 名義尺度 順序尺度 量的変数 間隔尺度 比例尺度
変数の種類 質的変数 名義尺度 順序尺度 量的変数 間隔尺度 比例尺度 因子型
とりあえず文字型 > bloodtype <- c("B","A","A","A","AB", + "B","AB","A","A","A","C") > bloodtype [1]
"B" "A" "A" "A" "AB" "B" "AB" [8] "A" "A" "A" "C" > table(bloodtype) bloodtype A AB B C 6 2 2 1
因子型に変換 | factor()関数 > bloodtype.f <- factor(bloodtype, + levels =
c("A","B","O","AB")) > bloodtype.f [1] B A A A AB B AB [8] A A A <NA> Levels: A B O AB > table(bloodtype.f) bloodtype.f A B O AB 6 2 0 2 > table(addNA(bloodtype.f)) A B O AB <NA> 6 2 0 2 1 カテゴリ(水準)を ベクトルで指定 カテゴリに一致しない データは<NA>に <NA>もカテゴリ として扱う
因子型の中身 整数型ベクトル 水準ベクトル > str(bloodtype.f) Factor w/ 4 levels "A","B","O","AB":
2 1 1 1 4 2 4 1 1 1 ... > # 整数型に変換 > as.numeric(bloodtype.f) [1] 2 1 1 1 4 2 4 1 1 1 NA > # 対応する水準ベクトルの文字に変換 > as.character(bloodtype.f) [1] "B" "A" "A" "A" "AB" "B" "AB" [8] "A" "A" "A" NA
データフレーム > pokemon <- read.csv("pokemon.csv") > head(pokemon$type1) [1] くさ みず
むし むし ノーマル [6] ノーマル 15 Levels: あく いわ エスパー かくとう ... むし 文字列を含んだ列は因子型として読み込まれる
文字型として読み込みたい | stringsAsFactors > pokemon2 <- read.csv("pokemon.csv", + stringsAsFactors =
FALSE) > head(pokemon2$type1) [1] "くさ" "みず" "むし" "むし" [5] "ノーマル" "ノーマル" 文字列処理をしたい場合とか。
集計と棒グラフ > table(pokemon$sex) オス なし メス 45 4 23 >
barplot(table(pokemon$sex)) オス なし メス 0 10 20 30 40
水準の順序を変更 > pokemon$sex <- factor(pokemon$sex, + levels = c("オス", "メス",
"なし")) > head(pokemon$sex) [1] オス オス オス メス オス オス Levels: オス メス なし > barplot(table(pokemon$sex)) オス メス なし 0 10 20 30 40
カテゴリごとの箱ひげ図 > boxplot(weight~type1, data=pokemon)
水準ごとの統計量で水準を並べ替え > pokemon$type1 <- reorder(pokemon$type1, + pokemon$weight, + function(x){-median(x)}) >
boxplot(weight~type1, data=pokemon) Type1ごとの weightの中央値の 降順に水準を並び替え
因子型の扱い 結構めんどくさい
そこで
forcats package > # パッケージのインストール > install.packages("forcats") > # パッケージのロード
> library(forcats) > pokemon <- read.csv("pokemon.csv") > boxplot(weight~fct_reorder(type1,weight,median,.desc=T), + data=pokemon)
例えば fct_lump() > # 頻出4水準のみ残して、後はOtherにする > boxplot(weight~fct_lump(pokemon$type1, 4), data=pokemon)
詳細は forcats kazutan
enjoy!