Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparkが社内で流行ってきた話
Search
Okada Haruki
October 08, 2016
Technology
4
940
Sparkが社内で流行ってきた話
Scala関西 Summit 2016での発表資料
Okada Haruki
October 08, 2016
Tweet
Share
More Decks by Okada Haruki
See All by Okada Haruki
HyperLogLog feature of ClickHouse
ocadaruma
0
1.5k
HyperLogLog is interesting
ocadaruma
3
860
A Redis compatible HLL implementation in Java
ocadaruma
0
340
sbt-uglifier
ocadaruma
0
1.2k
Other Decks in Technology
See All in Technology
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
1
290
EventBridge API Destination × AgentCore Runtimeで実現するLambdaレスなイベント駆動エージェント
har1101
7
280
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
1
270
GCASアップデート(202510-202601)
techniczna
0
210
分析画面のクリック操作をそのままコード化 ! エンジニアとビジネスユーザーが共存するAI-ReadyなBI基盤
ikumi
0
100
Regional_NAT_Gatewayについて_basicとの違い_試した内容スケールアウト_インについて_IPv6_dual_networkでの使い分けなど.pdf
cloudevcode
1
200
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
生成AI時代にこそ求められるSRE / SRE for Gen AI era
ymotongpoo
4
600
AI時代、1年目エンジニアの悩み
jin4
1
130
あたらしい上流工程の形。 0日導入からはじめるAI駆動PM
kumaiu
4
600
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
4
290
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
WCS-LA-2024
lcolladotor
0
430
Darren the Foodie - Storyboard
khoart
PRO
2
2.3k
Designing for Timeless Needs
cassininazir
0
120
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
The agentic SEO stack - context over prompts
schlessera
0
610
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Why Our Code Smells
bkeepers
PRO
340
58k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
First, design no harm
axbom
PRO
2
1.1k
Ruling the World: When Life Gets Gamed
codingconduct
0
130
Transcript
Sparkが社内で 流行ってきた話 株式会社オプト 岡田遥来
目次 • Sparkとは • オプトでのSpark採用の経緯 • Spark採用プロダクトが増えてきた話
自己紹介 • 岡田 遥来 (@ocadaruma) • 株式会社 Demand Side Science
(2015-03~2015-12) • 株式会社 オプト (2016-01~) • おもにログ計測/集計等バックエンド • Spark (on EMR) • DynamoDB • Redshift • Github: sbt-youtube, chronoscala
Sparkとは • オープンソースの大規模データ処理フレームワーク • Scalaで実装されている • オンメモリ主体の高速な処理 • Scala, Java,
Python, R用のインターフェースがある
Sparkでの処理の書き方 • collection操作の要領でロジックを書く • ローカルでも動かせるし、そのまま大規模クラスタ上でも動く import org.apache.spark.{SparkConf, SparkContext} object Main
{ def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("word_count") val sc = new SparkContext(conf) sc.textFile("/path/to/input") .flatMap(_.split(' ')) .map((_, 1)) .reduceByKey(_ + _) .map { case (word, count) => s"$word:$count" } .saveAsTextFile("/path/to/output/word_count.txt") } }
Sparkで扱える入力 • ローカルファイル • Scalaのコレクション • HDFS • S3 •
etc,…
オプトでのSpark採用の経緯 • 広告効果計測システムの新バージョン開発 • 開発言語: Scala • インフラ: AWS •
データ規模: 6,000,000 req / h • Sparkが候補に -> 採用
アーキテクチャ概要
広告効果計測で行う処理の例 • セッション化 • アクセス解析 / 広告効果解析では、サイトへの来訪を表す「セッション」単位 での分析を行う • 一定間隔空かないPVの集合を「セッション」にまとめる
None
Sparkでのセッション化 sealed trait Event { def epochMillis: Long def cookieId:
String } case class PageView(epochMillis: Long, cookieId: String, url: String) extends Event case class Click(epochMillis: Long, cookieId: String, referrer: String) extends Event case class Session(epochMillis: Long, cookieId: String, numPageViews: Int) val pageViews = sc.textFile("/path/to/page_views") .map(decodePageView(_): Event) val clicks = sc.textFile("/path/to/clicks") .map(decodeClick(_): Event) val sessions = (pageViews ++ clicks) .map(e => (e.cookieId, e)) .groupByKey() .flatMap { case (_, events) => sessionize(events.toSeq) }
広告効果計測で行う処理の例 • ラストクリックの突合せ • 広告効果解析では、コンバージョン(購入等)に至るまでにクリックされた広 告のうち、最後のもの(ラストクリック)を重視する • (最近は、ラストクリック以外を評価する様々な考え方も出てきているが) • CVログに対して、過去のクリック履歴を参照し、ラストクリックを突き合わせる
処理
None
Sparkでのラストクリック突合せ case class Conversion(epochMillis: Long, cookieId: String) case class ConversionWithLastClick(conversion:
Conversion, lastClick: Option[Click]) def fetchClickHistory(epochMillis: Long, numDays: Int): Option[Click] = ??? val conversions = sc.textFile("/path/to/conversions") .map(decodeConversion) val conversionsWithLastClick = conversions.map { cv => ConversionWithLastClick(cv, fetchClickHistory(cv.epochMillis, 30)) }
TIPS1: broadcastの利用 • 集計で必要な設定/マスタデータ等は、ドライバで読んでbroadcast • 各executorに都度Serializeして送信、が発生しないように case class Config(lastClickTrackingDays: Int)
def fetchConfig(): Config = ??? val config = fetchConfig() val configBroadcast = sc.broadcast(config) val conversions = sc.textFile("/path/to/conversions") .map(decodeConversion) val conversionsWithLastClick = conversions.map { cv => ConversionWithLastClick(cv, fetchClickHistory(cv.epochMillis, configBroadcast.value.lastClickTrackingDays)) }
TIPS2: Spark起動して自動テスト 1/2 • Sparkの依存をprovidedとtestで加える • assemblyに含めないように • test時にローカルモードで動かせるように val
sparkCore = "org.apache.spark" %% "spark-core" % "1.6.1" libraryDependencies ++= Seq( sparkCore % Provided, sparkCore % Test )
TIPS2: Spark起動して自動テスト 2/2 class SparkTest extends FlatSpec { it should
"calculate sum" in { val conf = new SparkConf().setAppName("testApp").setMaster("local[*]") val sc = new SparkContext(conf) val numbers = sc.parallelize(1 to 10) assert(numbers.sum() == 55) } }
Sparkを導入して分かったこと • RDDの枠組みの上でロジックを書けば、ちゃんとスケールする • localモードを使って、Sparkを起動するユニットテストも書ける • EMRのSparkバイナリがScala 2.10ビルドだった • Scala
2.11アプリを動かすには、ひと工夫必要 • 自前でビルドしたものをS3に配置、実行時にspark-yarn-jarを指定 • EMR 5.0.0ではSpark 2.0.0になり、Scala 2.11ビルドになった • DynamoDBがボトルネックに • せっかくのSparkの高速性を活かせない • できるだけI/Oは減らし、Sparkで完結する作りにするべき
Spark採用プロダクトが増えてきた話 • Sparkの知見が得られ、社内に詳しい人がいる状態になった • 他プロダクトでも採用 • 商品リスト広告(PLA)のレコメンドエンジン開発 • データフィード管理システム開発
レコメンドエンジン • 協調フィルタリング(ALS)により、配信する広告のレコメンドを行う • 以下の処理をSpark MLlib on EMRで実行 • ハイパーパラメータの計算
• ユーザの閲覧履歴をもとにした、モデルの構築
None
データフィード管理システム • 広告主のもつ様々な商品情報を結合・加工し、データフィード広告の ためのフィードを生成する • 商品情報のフィルタ / 結合 / 加工に、Spark
SQL on EMRを利用
None
まとめ • 社内で、分散並列処理を行う際の有力候補として定着してきた • マネージドクラスタが用意されていて楽 • AWS -> EMR •
GCP -> Cloud Dataproc(試してない) • Scalaで書けるのがよい
株式会社オプトでは Scalaエンジニアを募集しています! • https://www.opt.ne.jp/opttechnologies/