Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparkが社内で流行ってきた話
Search
Okada Haruki
October 08, 2016
Technology
4
850
Sparkが社内で流行ってきた話
Scala関西 Summit 2016での発表資料
Okada Haruki
October 08, 2016
Tweet
Share
More Decks by Okada Haruki
See All by Okada Haruki
HyperLogLog feature of ClickHouse
ocadaruma
0
1.2k
HyperLogLog is interesting
ocadaruma
3
730
A Redis compatible HLL implementation in Java
ocadaruma
0
280
sbt-uglifier
ocadaruma
0
1.1k
Other Decks in Technology
See All in Technology
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
170
どちらを使う?GitHub or Azure DevOps Ver. 24H2
kkamegawa
0
620
社外コミュニティで学び社内に活かす共に学ぶプロジェクトの実践/backlogworld2024
nishiuma
0
250
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1k
alecthomas/kong はいいぞ / kamakura.go#7
fujiwara3
1
300
宇宙ベンチャーにおける最近の情シス取り組みについて
axelmizu
0
110
ハイテク休憩
sat
PRO
2
120
小学3年生夏休みの自由研究「夏休みに Copilot で遊んでみた」
taichinakamura
0
140
5分でわかるDuckDB
chanyou0311
10
3.2k
私なりのAIのご紹介 [2024年版]
qt_luigi
1
120
re:Invent 2024 Innovation Talks(NET201)で語られた大切なこと
shotashiratori
0
300
成果を出しながら成長する、アウトプット駆動のキャッチアップ術 / Output-driven catch-up techniques to grow while producing results
aiandrox
0
180
Featured
See All Featured
Done Done
chrislema
181
16k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
95
17k
Building Applications with DynamoDB
mza
91
6.1k
Facilitating Awesome Meetings
lara
50
6.1k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Code Reviewing Like a Champion
maltzj
520
39k
A Tale of Four Properties
chriscoyier
157
23k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
A better future with KSS
kneath
238
17k
Automating Front-end Workflow
addyosmani
1366
200k
Transcript
Sparkが社内で 流行ってきた話 株式会社オプト 岡田遥来
目次 • Sparkとは • オプトでのSpark採用の経緯 • Spark採用プロダクトが増えてきた話
自己紹介 • 岡田 遥来 (@ocadaruma) • 株式会社 Demand Side Science
(2015-03~2015-12) • 株式会社 オプト (2016-01~) • おもにログ計測/集計等バックエンド • Spark (on EMR) • DynamoDB • Redshift • Github: sbt-youtube, chronoscala
Sparkとは • オープンソースの大規模データ処理フレームワーク • Scalaで実装されている • オンメモリ主体の高速な処理 • Scala, Java,
Python, R用のインターフェースがある
Sparkでの処理の書き方 • collection操作の要領でロジックを書く • ローカルでも動かせるし、そのまま大規模クラスタ上でも動く import org.apache.spark.{SparkConf, SparkContext} object Main
{ def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("word_count") val sc = new SparkContext(conf) sc.textFile("/path/to/input") .flatMap(_.split(' ')) .map((_, 1)) .reduceByKey(_ + _) .map { case (word, count) => s"$word:$count" } .saveAsTextFile("/path/to/output/word_count.txt") } }
Sparkで扱える入力 • ローカルファイル • Scalaのコレクション • HDFS • S3 •
etc,…
オプトでのSpark採用の経緯 • 広告効果計測システムの新バージョン開発 • 開発言語: Scala • インフラ: AWS •
データ規模: 6,000,000 req / h • Sparkが候補に -> 採用
アーキテクチャ概要
広告効果計測で行う処理の例 • セッション化 • アクセス解析 / 広告効果解析では、サイトへの来訪を表す「セッション」単位 での分析を行う • 一定間隔空かないPVの集合を「セッション」にまとめる
None
Sparkでのセッション化 sealed trait Event { def epochMillis: Long def cookieId:
String } case class PageView(epochMillis: Long, cookieId: String, url: String) extends Event case class Click(epochMillis: Long, cookieId: String, referrer: String) extends Event case class Session(epochMillis: Long, cookieId: String, numPageViews: Int) val pageViews = sc.textFile("/path/to/page_views") .map(decodePageView(_): Event) val clicks = sc.textFile("/path/to/clicks") .map(decodeClick(_): Event) val sessions = (pageViews ++ clicks) .map(e => (e.cookieId, e)) .groupByKey() .flatMap { case (_, events) => sessionize(events.toSeq) }
広告効果計測で行う処理の例 • ラストクリックの突合せ • 広告効果解析では、コンバージョン(購入等)に至るまでにクリックされた広 告のうち、最後のもの(ラストクリック)を重視する • (最近は、ラストクリック以外を評価する様々な考え方も出てきているが) • CVログに対して、過去のクリック履歴を参照し、ラストクリックを突き合わせる
処理
None
Sparkでのラストクリック突合せ case class Conversion(epochMillis: Long, cookieId: String) case class ConversionWithLastClick(conversion:
Conversion, lastClick: Option[Click]) def fetchClickHistory(epochMillis: Long, numDays: Int): Option[Click] = ??? val conversions = sc.textFile("/path/to/conversions") .map(decodeConversion) val conversionsWithLastClick = conversions.map { cv => ConversionWithLastClick(cv, fetchClickHistory(cv.epochMillis, 30)) }
TIPS1: broadcastの利用 • 集計で必要な設定/マスタデータ等は、ドライバで読んでbroadcast • 各executorに都度Serializeして送信、が発生しないように case class Config(lastClickTrackingDays: Int)
def fetchConfig(): Config = ??? val config = fetchConfig() val configBroadcast = sc.broadcast(config) val conversions = sc.textFile("/path/to/conversions") .map(decodeConversion) val conversionsWithLastClick = conversions.map { cv => ConversionWithLastClick(cv, fetchClickHistory(cv.epochMillis, configBroadcast.value.lastClickTrackingDays)) }
TIPS2: Spark起動して自動テスト 1/2 • Sparkの依存をprovidedとtestで加える • assemblyに含めないように • test時にローカルモードで動かせるように val
sparkCore = "org.apache.spark" %% "spark-core" % "1.6.1" libraryDependencies ++= Seq( sparkCore % Provided, sparkCore % Test )
TIPS2: Spark起動して自動テスト 2/2 class SparkTest extends FlatSpec { it should
"calculate sum" in { val conf = new SparkConf().setAppName("testApp").setMaster("local[*]") val sc = new SparkContext(conf) val numbers = sc.parallelize(1 to 10) assert(numbers.sum() == 55) } }
Sparkを導入して分かったこと • RDDの枠組みの上でロジックを書けば、ちゃんとスケールする • localモードを使って、Sparkを起動するユニットテストも書ける • EMRのSparkバイナリがScala 2.10ビルドだった • Scala
2.11アプリを動かすには、ひと工夫必要 • 自前でビルドしたものをS3に配置、実行時にspark-yarn-jarを指定 • EMR 5.0.0ではSpark 2.0.0になり、Scala 2.11ビルドになった • DynamoDBがボトルネックに • せっかくのSparkの高速性を活かせない • できるだけI/Oは減らし、Sparkで完結する作りにするべき
Spark採用プロダクトが増えてきた話 • Sparkの知見が得られ、社内に詳しい人がいる状態になった • 他プロダクトでも採用 • 商品リスト広告(PLA)のレコメンドエンジン開発 • データフィード管理システム開発
レコメンドエンジン • 協調フィルタリング(ALS)により、配信する広告のレコメンドを行う • 以下の処理をSpark MLlib on EMRで実行 • ハイパーパラメータの計算
• ユーザの閲覧履歴をもとにした、モデルの構築
None
データフィード管理システム • 広告主のもつ様々な商品情報を結合・加工し、データフィード広告の ためのフィードを生成する • 商品情報のフィルタ / 結合 / 加工に、Spark
SQL on EMRを利用
None
まとめ • 社内で、分散並列処理を行う際の有力候補として定着してきた • マネージドクラスタが用意されていて楽 • AWS -> EMR •
GCP -> Cloud Dataproc(試してない) • Scalaで書けるのがよい
株式会社オプトでは Scalaエンジニアを募集しています! • https://www.opt.ne.jp/opttechnologies/