Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Arbitrariness for Classification

Avatar for ohto ohto
May 28, 2017

Arbitrariness for Classification

Avatar for ohto

ohto

May 28, 2017
Tweet

More Decks by ohto

Other Decks in Technology

Transcript

  1. 「恣意性」の使い方 -考えない データが素直なとき – データが連続値 – データ間の距離が ユークリッド距離 Edgar Anderson's

    Iris Data at Plotting the IrisData http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/iris_plots/ 17 / 27
  2. 「恣意性」の使い方 -考えない 大量データで押し切る ⇒ Deep learning – 中間層で非線形性を学習 – 理由が不明:

    ブラックボックス Machine Learning: Supervised Learning pt. 2 http://www.nelsonspencer.com/blog/2015/2/15/machine-learning-supervised-learning-pt-2 18 / 27
  3. 「恣意性」の使い方 -考えない 大量データで押し切る ⇒ Deep learning Le & al.: Building

    High-level Features Using Large Scale..., 2012 https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/38115.pdf 19 / 27
  4. 「恣意性」の使い方 考えない 大量データで押し切る ⇒ Deep Learning – 集合の外延的定義 (集合Aは {1,3,5,7,9,...}

    からなる) – ルールを分類器側で推測してもらう 直接関わる 対象データの特徴を使う – 集合の内包的定義 (集合Aは正の奇数) – 設計者がルールを与える 22 / 27
  5. 「恣意性」の使い方 -考えない 大量データで押し切る ⇒ Deep Learning Pros – 対象データの内容によらず汎用的に使える 恣意性が減る

    – 簡単に認識率が上げられる Cons – いろんな種類のデータが大量に必要 – 分類器の学習に多量の計算量がかかる – 分類方法がブラックボックス – メタパラメータの調整が必要 中間層の数とか... データが用意できればGood 23 / 27
  6. 「恣意性」の使い方 -直接関わる 対象データの特徴を使う Pros – 学習データは少量でOK – 小さい計算量 – 分類方法の中身がわかる

    Cons – 特徴量や類似度の定義、分類器の選択が必要 – どう定義するかに恣意性が入る 皆が納得いく恣意性なら問題ないはず 最終的には使えるものであればOK 24 / 27
  7. まとめ • 分類には「恣意性」が必要 • 「恣意性」の使い方 – 考えない /大量データで押し切る – 関わる

    /対象データの特徴を使う – ハイブリッド /いいとこどり 「恣意性」を味方につけましょう 27 / 27