Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Arbitrariness for Classification
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
ohto
May 28, 2017
Technology
0
1.2k
Arbitrariness for Classification
ohto
May 28, 2017
Tweet
Share
More Decks by ohto
See All by ohto
speed cube
ohto
1
140
Living a Software Engineer
ohto
0
100
Redmine on Docker
ohto
0
180
Ruby de FizzBuzz
ohto
0
110
enjoy your dream
ohto
0
130
We may be win a computer
ohto
0
1.2k
Things that computers can not do
ohto
0
130
mumbling about data mining
ohto
0
2.6k
Other Decks in Technology
See All in Technology
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
870
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.3k
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
100
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
130
What happened to RubyGems and what can we learn?
mikemcquaid
0
270
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
510
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
620
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
920
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
380
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.3k
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
160
Featured
See All Featured
Marketing to machines
jonoalderson
1
4.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Everyday Curiosity
cassininazir
0
130
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
64
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
Transcript
分類するということ By Yasunori Ohto
自己紹介 名前: 大戸康紀 所属: (社名公開NG でした) 仕事: データマイニングとか(過去形...) 2 /
27
活動 数学やってます google検索で8番目 日時: 2017/5/27 記事数: 909,000 3 / 27
おことわり • ゆるいです ^^; • 数学成分少ないです m_ _m Qiita とかに良い記事がいっぱいあるよ〜
4 / 27
概要 • 分類には「恣意性」が必要 • 「恣意性」の使い方 5 / 27
分類とは -wikipedia から 分類(ぶんるい)とは、複数の事物や現象を、何 らかの基準に従って区分することによって体系づ けることである。そうして作られたグループをカ テゴリという。 概要 凡そ分類というのはある特定の観点から分けら れた便宜的なものに過ぎず、別の観点からは異
なる分類が可能であり、カテゴリ間に明確な境 界がないことも多い。(赤は筆者による) https://ja.wikipedia.org/wiki/分類 6 / 27
分類例 • 図書館十進分類法 • 日本酒 • 世界の瞑想法 • 系統樹 7
/ 27
はつかいち市民図書館 http://www.hiroshima-hatsukaichi-lib.jp/docshp/young.html 分類例 -図書館十進分類法 8 / 27
分類例 -日本酒 世嬉の一(せきのいち)酒造 http://www.sekinoichi.com/fs/sekinoichi/c/sakechart 分類軸は 業界的に認知 されている 9 / 27
分類例 -世界の瞑想法 分類軸は 研究者の センス 世界の瞑想法 http://morfov.blog79.fc2.com/blog-entry-89.html 10 / 27
分類例 -系統樹 A) Thewissen et al., 2007 5号館を出て http://shinka3.exblog.jp/12442224/ 今までは
骨を中心とする 形による分類 11 / 27
分類例 -系統樹 B) O’Leary and Gatesy, 2008 5号館を出て http://shinka3.exblog.jp/12442224/ 遺伝子の比較を
組み合わせると クジラは カバに近い!! 12 / 27
分類例 -系統樹 分類基準は変化する... 1.魚 2.哺乳類(胎盤がある) 3.偶蹄目(骨格) 4.カバの類縁(遺伝子) 多くの人が納得する分類基準であれば良い 13 /
27
人によって分類軸は違う CMは迷惑? – 昔、ビデオレコーダーに「CMカット」があった – 今、チャプターの自動認識 – チャプターはCMを切り出している訳ではない... 人によって分類は変わる –
番組制作側は見て欲しい(番組はCMを...ry) – CMをみたい人もいるよね 14 / 27
さて、 15 / 27
「恣意性」の使い方 考えない – データが素直なとき – 大量データで押し切る 直接関わる – 対象データの特徴を使う 融合
16 / 27
「恣意性」の使い方 -考えない データが素直なとき – データが連続値 – データ間の距離が ユークリッド距離 Edgar Anderson's
Iris Data at Plotting the IrisData http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/iris_plots/ 17 / 27
「恣意性」の使い方 -考えない 大量データで押し切る ⇒ Deep learning – 中間層で非線形性を学習 – 理由が不明:
ブラックボックス Machine Learning: Supervised Learning pt. 2 http://www.nelsonspencer.com/blog/2015/2/15/machine-learning-supervised-learning-pt-2 18 / 27
「恣意性」の使い方 -考えない 大量データで押し切る ⇒ Deep learning Le & al.: Building
High-level Features Using Large Scale..., 2012 https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/38115.pdf 19 / 27
「恣意性」の使い方 -直接関わる 対象データの特徴を使う 例:類似文書の分類 – 特徴量(特徴ベクトル) ⇒ Bag of Words
– 特徴量間の類似度の定義 ⇒コサイン類似度 – 分類器の選択 20 / 27
「恣意性」の使い方 -直接関わる 対象データの特徴を使う 例:ベーカリースキャン パンを判別して価格を出す – ユーザがちょっと手助け – 学習時間が短い –
実用性があればOK ベーカリースキャン http://www.g-mark.org/award/describe/42788 21 / 27
「恣意性」の使い方 考えない 大量データで押し切る ⇒ Deep Learning – 集合の外延的定義 (集合Aは {1,3,5,7,9,...}
からなる) – ルールを分類器側で推測してもらう 直接関わる 対象データの特徴を使う – 集合の内包的定義 (集合Aは正の奇数) – 設計者がルールを与える 22 / 27
「恣意性」の使い方 -考えない 大量データで押し切る ⇒ Deep Learning Pros – 対象データの内容によらず汎用的に使える 恣意性が減る
– 簡単に認識率が上げられる Cons – いろんな種類のデータが大量に必要 – 分類器の学習に多量の計算量がかかる – 分類方法がブラックボックス – メタパラメータの調整が必要 中間層の数とか... データが用意できればGood 23 / 27
「恣意性」の使い方 -直接関わる 対象データの特徴を使う Pros – 学習データは少量でOK – 小さい計算量 – 分類方法の中身がわかる
Cons – 特徴量や類似度の定義、分類器の選択が必要 – どう定義するかに恣意性が入る 皆が納得いく恣意性なら問題ないはず 最終的には使えるものであればOK 24 / 27
「恣意性」の使い方 -ハイブリッド • 対象データの特徴を用いた特徴量(ベクトル) – 扱うデータ量を低減 – データの複雑度(非線形度合い)を緩和 • 分類器としてニューラルネット
– 調整が必要なパラメータを低減 いいとこどりしよう 25 / 27
まとめ • 分類には「恣意性」が必要 • 「恣意性」の使い方 – 考えない /大量データで押し切る – 関わる
/対象データの特徴を使う – ハイブリッド /いいとこどり 26 / 27
まとめ • 分類には「恣意性」が必要 • 「恣意性」の使い方 – 考えない /大量データで押し切る – 関わる
/対象データの特徴を使う – ハイブリッド /いいとこどり 「恣意性」を味方につけましょう 27 / 27
おしまい