Machine Learning & Data Science in the Age of the GPU: Smarter, Faster, Better
View the deck from the presentation, "Machine Learning & Data Science in the Age of the GPU: Smarter, Faster, Better," as presented by Aaron Williams, VP Global Community of MapD at The 2017 SoCal Data Science Conference.
world’s fastest columnar database, powered by GPUs + Visualization at the Speed of Thought MapD Immerse A visualization front end that leverages the speed & rendering superiority of GPUs
Processing 40,000 Cores 20 Cores *fictitious example Latency Throughput CPU 1 ns per task (1 task/ns) x (20 cores) = 20 tasks/ns GPU 10 ns per task (0.1 task per ns) x (40,000 cores) = 4,000 task per ns Latency: Time to do a task. | Throughput: Number of tasks per unit time.
inefficient • each operator in SQL treated as a separate function • incurs tremendous overhead and prevents vectorization MapD compiles queries w/LLVM to create one custom function • Queries run at speeds approaching hand-written functions • LLVM enables generic targeting of different architectures (GPUs, X86, ARM, etc). • Code can be generated to run query on CPU and GPU simultaneously 10111010101001010110101101010101 00110101101101010101010101011101 LLVM
memory use 9 SSD or NVRAM STORAGE (L3) 250GB to 20TB 1-2 GB/sec CPU RAM (L2) 32GB to 3TB 70-120 GB/sec GPU RAM (L1) 24GB to 256GB 1000-6000 GB/sec Hot Data Speedup = 1500x to 5000x Over Cold Data Warm Data Speedup = 35x to 120x Over Cold Data Cold Data COMPUTE LAYER STORAGE LAYER Data Lake/Data Warehouse/System Of Record Speed Increases Space Increases
speed and scale visualization 12 Basic charts are frontend rendered using D3 and other related toolkits Scatterplots, pointmaps + polygons are backend rendered using the Iris Rendering Engine on GPUs Geo-Viz is composited over a frontend rendered basemap
it’s “… the new h0t sh1t”) 13 Play with the live demos: https://www.mapd.com/demos/ Download the Community Edition: https://www.mapd.com/platform/download-community/ Join our forums: https://community.mapd.com/ Review these slides: https://www.slideshare.net/aaronrogerwilliams