Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Personalizing Lexical Simplification
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
October 17, 2018
Research
0
79
Personalizing Lexical Simplification
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 17, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
160
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
650
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
680
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
560
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
630
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.1k
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
130
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
Testing 201, or: Great Expectations
jmmastey
46
8k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
Facilitating Awesome Meetings
lara
57
6.7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Technical Leadership for Architectural Decision Making
baasie
1
240
Evolving SEO for Evolving Search Engines
ryanjones
0
120
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
690
Building Applications with DynamoDB
mza
96
6.9k
[SF Ruby Conf 2025] Rails X
palkan
1
740
WENDY [Excerpt]
tessaabrams
9
36k
Transcript
COLING Personalizing Lexical Simplification 2018/10/17 M1
;' • Lexical SimplificationLS1+50)8% • 1+50&7 6 • /20!-:
LS,* • -:. 9"( • $1 50Target # • $1 50Candidate43 2
• Lexical SimplificationLS • • •
• • • • • 3
4 Complex Sentence The cat perched on the mat. Substitution
Generation perched : rested, sat, alighted Substitution Ranking #1 : sat, #2 : rested Substitution Selection perched : rested, sat Complex Word Identification The cat perched on the mat. Simplification Sentence The cat sat on the mat.
Complex Word IdentificationCWI • SemEval2016 • 1
• 20 ! 0.244 • 5
23$" /40#:5 LS,* Complex Word Identification • 4-1+80/:5 )! •
%9 Target. Substitution RankingSubstitution Selection ? • '7(801+80 • 6& 6
(%$&)94 • 15+!*'% • 12000@=50#"!: 1. / 2. /
3. / 3?8 or 3?D 4. 6. . 5. A2@=3? . Low Proficiency 074+ 218@=;-CE<41% High Proficiency ,74+ 218@=;-CE<75% 7 1-4> 5B@
8 Targetavoid BenchLS
" #-4'* ( • 40+# !)% •
F& • #- +#,#- +#$ 9
3=#4 • nilBaseline • Target 86( 7. • Candidate
86( +: • gold • 27.+:*, • +:Target7.Candidate'; • auto0-"& • 40586</9/! %$ • ! 7.+: 1) 10
)%#+ • Precision • !- & • !-,'"*
• ($,'"* • Accuracy • "*,'. • "* • ($,'"* • Readability • "* ,' !- 11
• • Candidate BenchLS •
• • Candidate • 12
13 Candidate • nil
• auto • gold
14 Candidate • nil • auto
• gold
• #+! • 4'). • 40*%
• , " • -* *%$( • &*% $( 15
• Ranking Selection • "!#%' • &) •
( 34.81%$ • 16