Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Personalizing Lexical Simplification
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
October 17, 2018
Research
0
79
Personalizing Lexical Simplification
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 17, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
6
3.1k
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
380
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
160
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
200
世界モデルにおける分布外データ対応の方法論
koukyo1994
6
1.1k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
480
超高速データサイエンス
matsui_528
2
380
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
680
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
180
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Featured
See All Featured
[SF Ruby Conf 2025] Rails X
palkan
1
750
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Why Our Code Smells
bkeepers
PRO
340
58k
Exploring anti-patterns in Rails
aemeredith
2
250
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Site-Speed That Sticks
csswizardry
13
1.1k
Transcript
COLING Personalizing Lexical Simplification 2018/10/17 M1
;' • Lexical SimplificationLS1+50)8% • 1+50&7 6 • /20!-:
LS,* • -:. 9"( • $1 50Target # • $1 50Candidate43 2
• Lexical SimplificationLS • • •
• • • • • 3
4 Complex Sentence The cat perched on the mat. Substitution
Generation perched : rested, sat, alighted Substitution Ranking #1 : sat, #2 : rested Substitution Selection perched : rested, sat Complex Word Identification The cat perched on the mat. Simplification Sentence The cat sat on the mat.
Complex Word IdentificationCWI • SemEval2016 • 1
• 20 ! 0.244 • 5
23$" /40#:5 LS,* Complex Word Identification • 4-1+80/:5 )! •
%9 Target. Substitution RankingSubstitution Selection ? • '7(801+80 • 6& 6
(%$&)94 • 15+!*'% • 12000@=50#"!: 1. / 2. /
3. / 3?8 or 3?D 4. 6. . 5. A2@=3? . Low Proficiency 074+ 218@=;-CE<41% High Proficiency ,74+ 218@=;-CE<75% 7 1-4> 5B@
8 Targetavoid BenchLS
" #-4'* ( • 40+# !)% •
F& • #- +#,#- +#$ 9
3=#4 • nilBaseline • Target 86( 7. • Candidate
86( +: • gold • 27.+:*, • +:Target7.Candidate'; • auto0-"& • 40586</9/! %$ • ! 7.+: 1) 10
)%#+ • Precision • !- & • !-,'"*
• ($,'"* • Accuracy • "*,'. • "* • ($,'"* • Readability • "* ,' !- 11
• • Candidate BenchLS •
• • Candidate • 12
13 Candidate • nil
• auto • gold
14 Candidate • nil • auto
• gold
• #+! • 4'). • 40*%
• , " • -* *%$( • &*% $( 15
• Ranking Selection • "!#%' • &) •
( 34.81%$ • 16