Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Personalizing Lexical Simplification
Search
onizuka laboratory
October 17, 2018
Research
0
79
Personalizing Lexical Simplification
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 17, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
160
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
570
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
130
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
150
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
110
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
260
20年前に50代だった人たちの今
hysmrk
0
140
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Navigating Weather and Climate Data
rabernat
0
100
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
120
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Unsuck your backbone
ammeep
671
58k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
The Language of Interfaces
destraynor
162
26k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Transcript
COLING Personalizing Lexical Simplification 2018/10/17 M1
;' • Lexical SimplificationLS1+50)8% • 1+50&7 6 • /20!-:
LS,* • -:. 9"( • $1 50Target # • $1 50Candidate43 2
• Lexical SimplificationLS • • •
• • • • • 3
4 Complex Sentence The cat perched on the mat. Substitution
Generation perched : rested, sat, alighted Substitution Ranking #1 : sat, #2 : rested Substitution Selection perched : rested, sat Complex Word Identification The cat perched on the mat. Simplification Sentence The cat sat on the mat.
Complex Word IdentificationCWI • SemEval2016 • 1
• 20 ! 0.244 • 5
23$" /40#:5 LS,* Complex Word Identification • 4-1+80/:5 )! •
%9 Target. Substitution RankingSubstitution Selection ? • '7(801+80 • 6& 6
(%$&)94 • 15+!*'% • 12000@=50#"!: 1. / 2. /
3. / 3?8 or 3?D 4. 6. . 5. A2@=3? . Low Proficiency 074+ 218@=;-CE<41% High Proficiency ,74+ 218@=;-CE<75% 7 1-4> 5B@
8 Targetavoid BenchLS
" #-4'* ( • 40+# !)% •
F& • #- +#,#- +#$ 9
3=#4 • nilBaseline • Target 86( 7. • Candidate
86( +: • gold • 27.+:*, • +:Target7.Candidate'; • auto0-"& • 40586</9/! %$ • ! 7.+: 1) 10
)%#+ • Precision • !- & • !-,'"*
• ($,'"* • Accuracy • "*,'. • "* • ($,'"* • Readability • "* ,' !- 11
• • Candidate BenchLS •
• • Candidate • 12
13 Candidate • nil
• auto • gold
14 Candidate • nil • auto
• gold
• #+! • 4'). • 40*%
• , " • -* *%$( • &*% $( 15
• Ranking Selection • "!#%' • &) •
( 34.81%$ • 16