Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Measuring Quality Content
Search
Adam Hyland
August 04, 2012
Research
2
79
Measuring Quality Content
Presentation to Wikimania 2012 on Article Feedback Tool statistics.
Adam Hyland
August 04, 2012
Tweet
Share
More Decks by Adam Hyland
See All by Adam Hyland
Here Comes (a significant fraction of) Everybody
protonk
0
78
Boston Data Swap: Data Vis Under Uncertainty
protonk
0
56
Why Nate Silver is Famous
protonk
1
120
Data Visualization under Uncertainty
protonk
0
770
Phillips Academy Wikipedia Introduction
protonk
0
90
Other Decks in Research
See All in Research
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
2k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
900
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
140
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
170
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
250
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
570
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
440
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
110
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
15
8.1k
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
180
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
Git: the NoSQL Database
bkeepers
PRO
432
66k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Product Roadmaps are Hard
iamctodd
PRO
55
12k
What's in a price? How to price your products and services
michaelherold
246
13k
Writing Fast Ruby
sferik
630
62k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Balancing Empowerment & Direction
lara
5
800
Transcript
Measuring Article Quality Peer Review and the Article Feedback Tool
Adam Hyland protonk @ en-wp
Look Familiar?
Maybe This Version?
None
Article Feedback Tool • Deployed in 2010 • Version 4
(the current version) ramped up in 2011 • Designed to offer an avenue for reader feedback • High volume of reader feedback
• 6 months of public data • 795,353 articles --
2,487,522 responses
Featured Articles (FA) • 3,599 articles (0.09% of all articles)
• 2,267 Featured Lists (FL) • Most rigorous peer review process on the English Wikipedia • Very sensitive to editor preferences • Some idiosyncrasies
Good Articles (GA) • 15,357 articles • Relatively rigorous peer
review (yes I know reasonable minds may disagree) • Less idiosyncratic than FA in some ways • Perhaps less dependent on editor preference
Data • Article name • Length (in bytes) • GA/FA
status (including former/not- promoted) • Some user data
None
Beyond Summaries • Reader ratings follow pageviews • Predominantly non-editors
• Popular articles: • Call of Duty • Justin Bieber • Jimmy Wales (avg. rating: 1.10585)
Power Laws Everywhere!
Classical(ish) Models • Logistic regression model supports a relationship between
rating and likelihood of FA/GA • Linear model does, but with a twist • Can’t escape Cambridge Endogeneity Police!
None
Data Mining • Predicting featured status from reader ratings and
minimal meta-data. • Bayesian classifier able to roughly predict featured status (with a high false positive rate)
But the system’s changing! • AFT v4 is a multi-category
quantitative measure • AFT v5 is, roughly, YES/NO • Is this a problem? • Frank Harrell and the perils of dichotomization.
Actual Reader Ratings
Another Look
For the skeptics
Information • We can imagine we might not lose information
in shifting to v5 • This is born out by the classifier, to some degree. • We don’t lose a lot of power when dichotomizing individual ratings
A Look Ahead • Really exciting! • Great compliment to
current research methods • Long exposures can help discover reader/editor divergence • Predictive analytics • Need more open data
Questions? • Of course you have questions! • All work
is or soon will be available on github under a free license • Full writeup on en-wp forthcoming