Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Atelier Datalab - volet technique
Search
Providenz - Laurent Paoletti
September 29, 2014
Technology
0
76
Atelier Datalab - volet technique
Stockage, analyse, visualisation de données et machine learning
Providenz - Laurent Paoletti
September 29, 2014
Tweet
Share
More Decks by Providenz - Laurent Paoletti
See All by Providenz - Laurent Paoletti
Introduction au machine learning
providenz
0
210
Des builds front plus rapides
providenz
0
50
Back to front
providenz
0
150
Machine Learning for the rest of us
providenz
1
190
Brunch, le builder pour les developpeurs pressés
providenz
0
160
Postgresql la plateforme de vos données
providenz
0
270
Performance web (Brown bag lunch)
providenz
0
44
Montée en charge
providenz
0
47
Présentation de django
providenz
0
45
Other Decks in Technology
See All in Technology
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
100
Tebiki Engineering Team Deck
tebiki
0
24k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
Cosmos World Foundation Model Platform for Physical AI
takmin
0
940
Webhook best practices for rock solid and resilient deployments
glaforge
2
300
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
160
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
580
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
180
プロポーザルに込める段取り八分
shoheimitani
1
460
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
120
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
470
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Being A Developer After 40
akosma
91
590k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Everyday Curiosity
cassininazir
0
130
Transcript
DATALAB l ’atelier Laurent Paoletti @providenz TVT - 29 septembre
2014
DATA BIG DATA DATASCIENCE définitions
VOLUME VÉLOCITÉ VARIÉTÉ COMPLEXITÉ critères
DONNÉES STRUCTURÉES SEMI-STRUCTURÉES NON STRUCTURÉES typologie
TEXTE HORODATEES GÉOGRAPHIQUES SCIENCE - FINANCE LOGS GRAPHE IMAGE/SON/VIDEO typologie
OPENDATA SERVICES - API ORGANIQUE CROWDSOURCING OBJETS CONNECTÉS ACHAT SCRAPING
- EXTRACTION sources
sources - api
HOME SERVEUR(S) CLOUD CUSTOM ! GPU FPGA plateformes -infrastructure
FICHIERS excel csv hdf5 plateformes -persistance
DB RELATIONELLES ! MYSQL POSTGRESQL SQLSERVER, ORACLE plateformes -persistance
SIG:POSTGIS plateformes -persistance
GRAPHES: NEO4J plateformes -persistance
RECHERCHE : ELASTICSEARCH plateformes -persistance
HADOOP SPARK HBASE plateformes -persistance
MAP-REDUCE plateformes -persistance
EXTRACTION NETTOYAGE ETL analyse - préparation
FILTRAGE TRANSFORMATION STATISTIQUES analyse
R SQL PYTHON OPENREFINE analyse - outils
« capacité qu’on donne à une machine d’ingérer des données
à apprendre et de s’enrichir grâce à son expérience » machine learning
machine learning ANTI-SPAM RECOMMANDATIONS SCORING OPTIMISATION DE PRIX IDENTIFICATION
TRAINING DATA machine learning 101
machine learning 101
machine learning 101 setosa
machine learning 101
machine learning 101 DATASET MODELE DATA PREDICTION apprentissage humain
« For a long time, we thought that Tamoxifen was
roughly 80% effective for breast cancer patients. But now we know much more: we know that it’s 100% effective in 70% to 80% of the patients, and ineffective in the rest. » ! machine learning 101
machine learning regression classification !
machine learning - outils R JAVA PYTHON SAAS ! !
visualisation http://flowingdata.com/page/2/
http://www.brightpointinc.com/interactive/political_influence/index.html?source=d3js WEB visualisation
http://www.brightpointinc.com/interactive/political_influence/index.html?source=d3js visualisation
EXCEL - GNUPLOT PYTHON - MATPLOTLIB WEB - D3.JS !
! visualisation - outils
Général: http://www.oreilly.com/data/ Pandas: http://pandas.pydata.org/ R: http://www.r-project.org/ Python: https://www.python.org/ Machine learning:
http://scikit-learn.org/ Openrefine: http://openrefine.org/ Postgis: http://postgis.net/ Elasticsearch: http://www.elasticsearch.org/ Hadoop: http://hadoop.apache.org/ Spark: https://spark.apache.org/ Hbase: http://hbase.apache.org/ D3: http://d3js.org/ Bigml: https://bigml.com/ Prediction API: https://cloud.google.com/prediction/?hl=fr ressources
merci Laurent Paoletti @providenz TVT - 29 septembre 2014