Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Atelier Datalab - volet technique
Search
Providenz - Laurent Paoletti
September 29, 2014
Technology
0
76
Atelier Datalab - volet technique
Stockage, analyse, visualisation de données et machine learning
Providenz - Laurent Paoletti
September 29, 2014
Tweet
Share
More Decks by Providenz - Laurent Paoletti
See All by Providenz - Laurent Paoletti
Introduction au machine learning
providenz
0
200
Des builds front plus rapides
providenz
0
50
Back to front
providenz
0
150
Machine Learning for the rest of us
providenz
1
190
Brunch, le builder pour les developpeurs pressés
providenz
0
160
Postgresql la plateforme de vos données
providenz
0
260
Performance web (Brown bag lunch)
providenz
0
42
Montée en charge
providenz
0
40
Présentation de django
providenz
0
44
Other Decks in Technology
See All in Technology
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
650
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.2k
障害対応訓練、その前に
coconala_engineer
0
190
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.3k
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.1k
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
17
2.7k
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
190
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
130
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
440
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
880
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.8k
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
How to Talk to Developers About Accessibility
jct
1
85
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
1.9k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
31
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Faster Mobile Websites
deanohume
310
31k
The Cult of Friendly URLs
andyhume
79
6.7k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Transcript
DATALAB l ’atelier Laurent Paoletti @providenz TVT - 29 septembre
2014
DATA BIG DATA DATASCIENCE définitions
VOLUME VÉLOCITÉ VARIÉTÉ COMPLEXITÉ critères
DONNÉES STRUCTURÉES SEMI-STRUCTURÉES NON STRUCTURÉES typologie
TEXTE HORODATEES GÉOGRAPHIQUES SCIENCE - FINANCE LOGS GRAPHE IMAGE/SON/VIDEO typologie
OPENDATA SERVICES - API ORGANIQUE CROWDSOURCING OBJETS CONNECTÉS ACHAT SCRAPING
- EXTRACTION sources
sources - api
HOME SERVEUR(S) CLOUD CUSTOM ! GPU FPGA plateformes -infrastructure
FICHIERS excel csv hdf5 plateformes -persistance
DB RELATIONELLES ! MYSQL POSTGRESQL SQLSERVER, ORACLE plateformes -persistance
SIG:POSTGIS plateformes -persistance
GRAPHES: NEO4J plateformes -persistance
RECHERCHE : ELASTICSEARCH plateformes -persistance
HADOOP SPARK HBASE plateformes -persistance
MAP-REDUCE plateformes -persistance
EXTRACTION NETTOYAGE ETL analyse - préparation
FILTRAGE TRANSFORMATION STATISTIQUES analyse
R SQL PYTHON OPENREFINE analyse - outils
« capacité qu’on donne à une machine d’ingérer des données
à apprendre et de s’enrichir grâce à son expérience » machine learning
machine learning ANTI-SPAM RECOMMANDATIONS SCORING OPTIMISATION DE PRIX IDENTIFICATION
TRAINING DATA machine learning 101
machine learning 101
machine learning 101 setosa
machine learning 101
machine learning 101 DATASET MODELE DATA PREDICTION apprentissage humain
« For a long time, we thought that Tamoxifen was
roughly 80% effective for breast cancer patients. But now we know much more: we know that it’s 100% effective in 70% to 80% of the patients, and ineffective in the rest. » ! machine learning 101
machine learning regression classification !
machine learning - outils R JAVA PYTHON SAAS ! !
visualisation http://flowingdata.com/page/2/
http://www.brightpointinc.com/interactive/political_influence/index.html?source=d3js WEB visualisation
http://www.brightpointinc.com/interactive/political_influence/index.html?source=d3js visualisation
EXCEL - GNUPLOT PYTHON - MATPLOTLIB WEB - D3.JS !
! visualisation - outils
Général: http://www.oreilly.com/data/ Pandas: http://pandas.pydata.org/ R: http://www.r-project.org/ Python: https://www.python.org/ Machine learning:
http://scikit-learn.org/ Openrefine: http://openrefine.org/ Postgis: http://postgis.net/ Elasticsearch: http://www.elasticsearch.org/ Hadoop: http://hadoop.apache.org/ Spark: https://spark.apache.org/ Hbase: http://hbase.apache.org/ D3: http://d3js.org/ Bigml: https://bigml.com/ Prediction API: https://cloud.google.com/prediction/?hl=fr ressources
merci Laurent Paoletti @providenz TVT - 29 septembre 2014