Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Atelier Datalab - volet technique
Search
Providenz - Laurent Paoletti
September 29, 2014
Technology
0
74
Atelier Datalab - volet technique
Stockage, analyse, visualisation de données et machine learning
Providenz - Laurent Paoletti
September 29, 2014
Tweet
Share
More Decks by Providenz - Laurent Paoletti
See All by Providenz - Laurent Paoletti
Introduction au machine learning
providenz
0
200
Des builds front plus rapides
providenz
0
48
Back to front
providenz
0
140
Machine Learning for the rest of us
providenz
1
190
Brunch, le builder pour les developpeurs pressés
providenz
0
160
Postgresql la plateforme de vos données
providenz
0
260
Performance web (Brown bag lunch)
providenz
0
40
Montée en charge
providenz
0
36
Présentation de django
providenz
0
43
Other Decks in Technology
See All in Technology
AWSで推進するデータマネジメント
kawanago
1
1.3k
Generative AI Japan 第一回生成AI実践研究会「AI駆動開発の現在地──ブレイクスルーの鍵を握るのはデータ領域」
shisyu_gaku
0
140
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
230
2025年夏 コーディングエージェントを統べる者
nwiizo
0
140
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
800
Skrub: machine-learning with dataframes
gaelvaroquaux
0
120
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
220
Agile PBL at New Grads Trainings
kawaguti
PRO
1
400
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
11
4.6k
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
AWSで始める実践Dagster入門
kitagawaz
1
590
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
310
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Why Our Code Smells
bkeepers
PRO
339
57k
Embracing the Ebb and Flow
colly
87
4.8k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
Building an army of robots
kneath
306
46k
Practical Orchestrator
shlominoach
190
11k
Writing Fast Ruby
sferik
628
62k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Transcript
DATALAB l ’atelier Laurent Paoletti @providenz TVT - 29 septembre
2014
DATA BIG DATA DATASCIENCE définitions
VOLUME VÉLOCITÉ VARIÉTÉ COMPLEXITÉ critères
DONNÉES STRUCTURÉES SEMI-STRUCTURÉES NON STRUCTURÉES typologie
TEXTE HORODATEES GÉOGRAPHIQUES SCIENCE - FINANCE LOGS GRAPHE IMAGE/SON/VIDEO typologie
OPENDATA SERVICES - API ORGANIQUE CROWDSOURCING OBJETS CONNECTÉS ACHAT SCRAPING
- EXTRACTION sources
sources - api
HOME SERVEUR(S) CLOUD CUSTOM ! GPU FPGA plateformes -infrastructure
FICHIERS excel csv hdf5 plateformes -persistance
DB RELATIONELLES ! MYSQL POSTGRESQL SQLSERVER, ORACLE plateformes -persistance
SIG:POSTGIS plateformes -persistance
GRAPHES: NEO4J plateformes -persistance
RECHERCHE : ELASTICSEARCH plateformes -persistance
HADOOP SPARK HBASE plateformes -persistance
MAP-REDUCE plateformes -persistance
EXTRACTION NETTOYAGE ETL analyse - préparation
FILTRAGE TRANSFORMATION STATISTIQUES analyse
R SQL PYTHON OPENREFINE analyse - outils
« capacité qu’on donne à une machine d’ingérer des données
à apprendre et de s’enrichir grâce à son expérience » machine learning
machine learning ANTI-SPAM RECOMMANDATIONS SCORING OPTIMISATION DE PRIX IDENTIFICATION
TRAINING DATA machine learning 101
machine learning 101
machine learning 101 setosa
machine learning 101
machine learning 101 DATASET MODELE DATA PREDICTION apprentissage humain
« For a long time, we thought that Tamoxifen was
roughly 80% effective for breast cancer patients. But now we know much more: we know that it’s 100% effective in 70% to 80% of the patients, and ineffective in the rest. » ! machine learning 101
machine learning regression classification !
machine learning - outils R JAVA PYTHON SAAS ! !
visualisation http://flowingdata.com/page/2/
http://www.brightpointinc.com/interactive/political_influence/index.html?source=d3js WEB visualisation
http://www.brightpointinc.com/interactive/political_influence/index.html?source=d3js visualisation
EXCEL - GNUPLOT PYTHON - MATPLOTLIB WEB - D3.JS !
! visualisation - outils
Général: http://www.oreilly.com/data/ Pandas: http://pandas.pydata.org/ R: http://www.r-project.org/ Python: https://www.python.org/ Machine learning:
http://scikit-learn.org/ Openrefine: http://openrefine.org/ Postgis: http://postgis.net/ Elasticsearch: http://www.elasticsearch.org/ Hadoop: http://hadoop.apache.org/ Spark: https://spark.apache.org/ Hbase: http://hbase.apache.org/ D3: http://d3js.org/ Bigml: https://bigml.com/ Prediction API: https://cloud.google.com/prediction/?hl=fr ressources
merci Laurent Paoletti @providenz TVT - 29 septembre 2014