efficient sampling • Samples during warmup NOT from posterior • Automatically discarded by precis/summary and other functions • Warmup is NOT “burn in” &"4: ).$ warmup
The maxent principle: • Distribution with largest entropy is distribution most consistent with stated assumptions • Can happen the largest number of ways • For parameters, provides way to construct priors • For observations, way to construct likelihood • Also reproduces Bayesian updating as special case (minimum cross-entropy) E. T. Jaynes (1922–1998)
The maxent principle: • Distribution with largest entropy is distribution most consistent with stated assumptions • Can happen the largest number of ways • For parameters, provides way to construct priors • For observations, way to construct likelihood • Also reproduces Bayesian updating as special case (minimum cross-entropy) E. T. Jaynes (1922–1998)
kind of distribution maximizes this quantity? • A: Flattest distribution still consistent with constraints. This is the distribution that can happen the most unique ways. • Whatever does happen, bound to be one of those ways. .BYJNVN FOUSPQZ $IBQUFS ZPV NFU UIF CBTJDT PG JOGPSNBUJPO UIFPSZ *O CSJFG XF TFFL B NFBT UBJOUZ UIBU TBUJTĕFT UISFF DSJUFSJB UIF NFBTVSF TIPVME CF DPOUJOVPVT JU T TF BT UIF OVNCFS PG QPTTJCMF FWFOUT JODSFBTFT BOE JU TIPVME CF BEEJUJWF ć H VOJRVF NFBTVSF PG UIF VODFSUBJOUZ PG B QSPCBCJMJUZ EJTUSJCVUJPO Q XJUI QSPCB FBDI QPTTJCMF FWFOU J UVSOT PVU UP CF KVTU UIF BWFSBHF MPHQSPCBCJMJUZ )(Q) = − J QJ MPH QJ VODUJPO JT LOPXO BT JOGPSNBUJPO FOUSPQZ
Maxent distribution is uniform, because flattest • What if there are other constraints, such that flat is impossible? 0.0 1.0 2.0 Density a b entropy = 0 0.0 1.0 2.0 Density a b entropy = -0.19 0.0 1.0 2.0 Density a b entropy = -0.13
up fluctuations, distribution of sums converges to Gaussian • Why? Vastly many more ways to realize Gaussian than another shape. • Flattest distribution with given variance • Ergo, Gaussian has maxent for all continuous, unbounded distributions with finite variance -4 -2 0 2 4 0.0 0.2 0.4 0.6 value Density 'ĶĴłĿIJ ƑƉ .BYJNVN FOUSPQZ BOE UI QBSJTPO PG (BVTTJBO CMVF BOE TFWFSBM UIF TBNF WBSJBODF 3JHIU &OUSPQZ JT N FSBMJ[FE OPSNBM EJTUSJCVUJPO NBUDIFT U HFOFSBMJ[FE EJTUSJCVUJPOT XJUI FRVBM WBSJBODF CZ UIF QSPCBCJMJUZ EFOTJUZ 1S(Z|µ, α, β) = αΓ 8F XBOU UP DPNQBSF B SFHVMBS (BVTTJBO EJTUSJC ."9*.6. &/5301: -4 -2 0 2 4 0.0 0.2 0.4 0.6 value Density 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.36 1.38 1.40 1.42 shape entropy
trials • Maxent now is binomial • e.g.: 2 trials, expected value 1.4 #*( &/5301: "/% 5)& (&/&3"-*;&% -*/&"3 .0%&- ww bw wb bb ww bw wb bb ww bw wb bb ww bw wb bb 0.7 0.8 0.9 1.0 1.1 1.2 0 2 4 6 8 Entropy Density A B C D A B C D binomial
variable • Strategy: 1. Pick an outcome distribution 2. Model its parameters using links to linear models 3. Compute posterior • Can model multivariate relationships and non- linear responses • Building blocks of multilevel models