Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ECE 486 Lecture
Search
Safwan Choudhury
June 06, 2012
Education
0
330
ECE 486 Lecture
Safwan Choudhury
June 06, 2012
Tweet
Share
More Decks by Safwan Choudhury
See All by Safwan Choudhury
Design and Gait Synthesis for a 3D Lower Body Humanoid
safwanc
1
73
Controlling Wheelchair Motion with Electroencephalography
safwanc
3
180
Accurate Determination of Joint Angles from Inertial Measurement Unit Data
safwanc
0
180
Gait Controller for 3D Active Dynamic Walking
safwanc
0
160
Bipedal Locomotion
safwanc
2
68
Learning Thought-Based Motor Control using Gaussian Processes
safwanc
0
130
Analysis of the Foot Placement Estimator
safwanc
0
210
Electromechanical Design
safwanc
0
150
Other Decks in Education
See All in Education
SISTEMA DE MEMORIA Y SU IMPACTO EN LAS DECISIONES.
jvpcubias
0
180
万博マニアックマップを支えるオープンデータとその裏側
barsaka2
0
890
Alumnote inc. Company Deck
yukinumata
0
3.1k
Web Application Frameworks - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
0
3k
RSJ2025 ランチョンセミナー 一歩ずつ世界へ:学生・若手研究者のための等身大の国際化の始め方
t_inamura
0
310
アントレプレナーシップ教育 ~ 自分で自分の幸せを決めるために ~
yoshizaki
0
210
Padlet opetuksessa
matleenalaakso
4
14k
Презентация "Знаю Россию"
spilsart
0
260
今の私を形作る4つの要素と偶然の出会い(セレンディピティ)
mamohacy
2
110
20250830_本社にみんなの公園を作ってみた
yoneyan
0
130
~キャラ付け考えていますか?~ AI時代だからこそ技術者に求められるセルフブランディングのすゝめ
masakiokuda
7
490
AWSと共に英語を学ぼう
amarelo_n24
0
180
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
900
How STYLIGHT went responsive
nonsquared
100
5.8k
Docker and Python
trallard
46
3.6k
Navigating Team Friction
lara
189
15k
Making Projects Easy
brettharned
119
6.4k
Designing Experiences People Love
moore
142
24k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Statistics for Hackers
jakevdp
799
220k
YesSQL, Process and Tooling at Scale
rocio
173
14k
It's Worth the Effort
3n
187
28k
Transcript
ECE 486: Robot Dynamics and Control Practical Applications of the
Jacobian Safwan Choudhury May 31, 2012
Brief Introduction
Bipedal Locomotion
Bipedal Robot 14 DOF Lower Body
q3 q2 q1
q4 q5
q7 q6
Electromechanical Design SolidWorks + Custom Toolchain
High Performance Direct Drive Micromo DC Motors + Misumi Drivetrain
Components
Machined on Campus Engineering Machine Shop (E3)
Full Dynamic Simulations Simulink + SimMechanics + QUARC
Basic Joint Control 7DOF Leg w/ Fixed Base
The Jacobian Differential Kinematics ˙ x = J ˙ q
Computing the Jacobian Columns The “Geometric” Approach Recall
Computing the Jacobian Columns The “Geometric” Approach Revolute Joints Ji
= zi 1 ⇥ ( on oi 1) zi 1 Ji = zi 1 0 Prismatic Joints Recall
Why?
Motivating Example q dq QUARC Visualization System Timebase Kp KP(1:7)
Knee Pitch 60 Kd KD(1:7)*5 Hip Yaw 0 Hip Roll 0 Hip Pitch -30 EN 1 D2R D2R D2R D2R D2R D2R D2R Biped τ q q′ q′′ Ankle Yaw 0 Ankle Roll 0 Ankle Pitch -20 Direct Joint Control
Motivating Example Direct Joint Control
What about complex motions? Inverse Kinematics? Other Methods?
Jacobian Inverse Control Differential Kinematics ˙ q = J 1
˙ x
Jacobian Inverse Control 1. Compute Jacobian matrix w.r.t. end effector
2. Invert the matrix (pseudoinverse if ) 3. Obtain by multiplying 4. Obtain by integrating ˙ q q = Z ˙ q q ˙ q = J 1 ˙ x n > 6
Motivating Example Work Space Analysis QUARC Visualization Trajectory Reference Model
Configuration Joint Space Analysis Jacobian Inverse Transformation q′ = J-1x′ J x′ q q′ Jacobian Computation DQREF QREF q → x q x x dqref qref Jacobian Inverse Control
Motivating Example τ q q′ q′′ PD Controller q error
q′ error τ control erse Transformation q′ = J-1x′ q q′ an Computation Control Torques DQREF QREF q → x q q dq dqref qref Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Jacobian Transpose Control Differential Kinematics ⌧ = JT F
Gravity Compensation Center of Mass (COM) as an End Effector
Motivating Example Without Gravity Compensation
Computing the Jacobian Columns The “Geometric” Approach Recall
Center of Mass Equation Rigid Body Physics Recall xcom =
P ximi P mi
Gravity Compensation Center of Mass (COM) as an End Effector
Partial Center of Mass Rigid Body Physics
Jacobian Transpose Control 1. Compute the partial center of masses
for each joint 2. Form the COM Jacobian matrix 3. Obtain from the basic formula 4. Obtain by multiplying J com ~ FG = m~ g ~ F ⌧G ⌧ G = JT com ~ F G
Jacobian Transpose Control With Gravity Compensation
Whole Body Control A Jacobian-Based Approach ˙ q = 2
6 6 4 JCOM J1 J2 J3 3 7 7 5 1 ˙ x
Independent Leg Motions Two Jacobian’s Stacked: JL + JR
Shifting Balance Three Jacobian’s Stacked: JCOM + JL + JR
Questions?