Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ECE 486 Lecture
Search
Safwan Choudhury
June 06, 2012
Education
0
320
ECE 486 Lecture
Safwan Choudhury
June 06, 2012
Tweet
Share
More Decks by Safwan Choudhury
See All by Safwan Choudhury
Design and Gait Synthesis for a 3D Lower Body Humanoid
safwanc
1
73
Controlling Wheelchair Motion with Electroencephalography
safwanc
3
180
Accurate Determination of Joint Angles from Inertial Measurement Unit Data
safwanc
0
180
Gait Controller for 3D Active Dynamic Walking
safwanc
0
150
Bipedal Locomotion
safwanc
2
67
Learning Thought-Based Motor Control using Gaussian Processes
safwanc
0
130
Analysis of the Foot Placement Estimator
safwanc
0
210
Electromechanical Design
safwanc
0
150
Other Decks in Education
See All in Education
2025年度春学期 統計学 第5回 分布をまとめるー記述統計量(平均・分散など) (2025. 5. 8)
akiraasano
PRO
0
140
社外コミュニティと「学び」を考える
alchemy1115
2
170
Linuxのよく使うコマンドを解説
mickey_kubo
1
240
SARA Annual Report 2024-25
sara2023
1
180
OpenRobomaster 中国のロボットコンテスト 日本連携の可能性
takasumasakazu
0
460
推しのコミュニティはなんぼあってもいい / Let's join a lot of communities.
kaga
2
1.8k
Human-AI Interaction - Lecture 11 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
470
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
580
プレゼンテーション実践
takenawa
0
8k
生成AIとの上手な付き合い方【公開版】/ How to Get Along Well with Generative AI (Public Version)
handlename
0
510
Interaction - Lecture 10 - Information Visualisation (4019538FNR)
signer
PRO
0
2k
教員向け生成AI基礎講座(2025年3月28日 東京大学メタバース工学部 ジュニア講座)
luiyoshida
1
620
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
830
Docker and Python
trallard
45
3.5k
Practical Orchestrator
shlominoach
189
11k
Testing 201, or: Great Expectations
jmmastey
43
7.6k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
GraphQLとの向き合い方2022年版
quramy
49
14k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
520
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
340
Transcript
ECE 486: Robot Dynamics and Control Practical Applications of the
Jacobian Safwan Choudhury May 31, 2012
Brief Introduction
Bipedal Locomotion
Bipedal Robot 14 DOF Lower Body
q3 q2 q1
q4 q5
q7 q6
Electromechanical Design SolidWorks + Custom Toolchain
High Performance Direct Drive Micromo DC Motors + Misumi Drivetrain
Components
Machined on Campus Engineering Machine Shop (E3)
Full Dynamic Simulations Simulink + SimMechanics + QUARC
Basic Joint Control 7DOF Leg w/ Fixed Base
The Jacobian Differential Kinematics ˙ x = J ˙ q
Computing the Jacobian Columns The “Geometric” Approach Recall
Computing the Jacobian Columns The “Geometric” Approach Revolute Joints Ji
= zi 1 ⇥ ( on oi 1) zi 1 Ji = zi 1 0 Prismatic Joints Recall
Why?
Motivating Example q dq QUARC Visualization System Timebase Kp KP(1:7)
Knee Pitch 60 Kd KD(1:7)*5 Hip Yaw 0 Hip Roll 0 Hip Pitch -30 EN 1 D2R D2R D2R D2R D2R D2R D2R Biped τ q q′ q′′ Ankle Yaw 0 Ankle Roll 0 Ankle Pitch -20 Direct Joint Control
Motivating Example Direct Joint Control
What about complex motions? Inverse Kinematics? Other Methods?
Jacobian Inverse Control Differential Kinematics ˙ q = J 1
˙ x
Jacobian Inverse Control 1. Compute Jacobian matrix w.r.t. end effector
2. Invert the matrix (pseudoinverse if ) 3. Obtain by multiplying 4. Obtain by integrating ˙ q q = Z ˙ q q ˙ q = J 1 ˙ x n > 6
Motivating Example Work Space Analysis QUARC Visualization Trajectory Reference Model
Configuration Joint Space Analysis Jacobian Inverse Transformation q′ = J-1x′ J x′ q q′ Jacobian Computation DQREF QREF q → x q x x dqref qref Jacobian Inverse Control
Motivating Example τ q q′ q′′ PD Controller q error
q′ error τ control erse Transformation q′ = J-1x′ q q′ an Computation Control Torques DQREF QREF q → x q q dq dqref qref Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Jacobian Transpose Control Differential Kinematics ⌧ = JT F
Gravity Compensation Center of Mass (COM) as an End Effector
Motivating Example Without Gravity Compensation
Computing the Jacobian Columns The “Geometric” Approach Recall
Center of Mass Equation Rigid Body Physics Recall xcom =
P ximi P mi
Gravity Compensation Center of Mass (COM) as an End Effector
Partial Center of Mass Rigid Body Physics
Jacobian Transpose Control 1. Compute the partial center of masses
for each joint 2. Form the COM Jacobian matrix 3. Obtain from the basic formula 4. Obtain by multiplying J com ~ FG = m~ g ~ F ⌧G ⌧ G = JT com ~ F G
Jacobian Transpose Control With Gravity Compensation
Whole Body Control A Jacobian-Based Approach ˙ q = 2
6 6 4 JCOM J1 J2 J3 3 7 7 5 1 ˙ x
Independent Leg Motions Two Jacobian’s Stacked: JL + JR
Shifting Balance Three Jacobian’s Stacked: JCOM + JL + JR
Questions?