Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ECE 486 Lecture
Search
Safwan Choudhury
June 06, 2012
Education
0
320
ECE 486 Lecture
Safwan Choudhury
June 06, 2012
Tweet
Share
More Decks by Safwan Choudhury
See All by Safwan Choudhury
Design and Gait Synthesis for a 3D Lower Body Humanoid
safwanc
1
73
Controlling Wheelchair Motion with Electroencephalography
safwanc
3
180
Accurate Determination of Joint Angles from Inertial Measurement Unit Data
safwanc
0
180
Gait Controller for 3D Active Dynamic Walking
safwanc
0
150
Bipedal Locomotion
safwanc
2
67
Learning Thought-Based Motor Control using Gaussian Processes
safwanc
0
130
Analysis of the Foot Placement Estimator
safwanc
0
200
Electromechanical Design
safwanc
0
150
Other Decks in Education
See All in Education
第1回大学院理工学系説明会|東京科学大学(Science Tokyo)
sciencetokyo
PRO
0
3.8k
2025年度春学期 統計学 第1回 イントロダクション (2025. 4. 10)
akiraasano
PRO
0
170
Case Studies and Course Review - Lecture 12 - Information Visualisation (4019538FNR)
signer
PRO
1
2k
SkimaTalk Introduction for Students
skimatalk
0
380
演習問題
takenawa
0
4.6k
JPCERTから始まる草の根活動~セキュリティ文化醸成のためのアクション~
masakiokuda
0
180
JOAI2025講評 / joai2025-review
upura
0
150
2025年度春学期 統計学 第2回 統計資料の収集と読み方(講義前配付用) (2025. 4. 17)
akiraasano
PRO
0
140
社外コミュニティと「学び」を考える
alchemy1115
2
170
新卒交流ワークショップ
pokotyamu
0
400
Gaps in Therapy in IBD - IBDInnovate 2025 CCF
higgi13425
0
480
系統性を意識したプログラミング教育~ガチャを実装しよう~
asial_edu
0
400
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
81
9.1k
Docker and Python
trallard
44
3.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
330
24k
Optimizing for Happiness
mojombo
379
70k
The Invisible Side of Design
smashingmag
299
51k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Typedesign – Prime Four
hannesfritz
42
2.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Transcript
ECE 486: Robot Dynamics and Control Practical Applications of the
Jacobian Safwan Choudhury May 31, 2012
Brief Introduction
Bipedal Locomotion
Bipedal Robot 14 DOF Lower Body
q3 q2 q1
q4 q5
q7 q6
Electromechanical Design SolidWorks + Custom Toolchain
High Performance Direct Drive Micromo DC Motors + Misumi Drivetrain
Components
Machined on Campus Engineering Machine Shop (E3)
Full Dynamic Simulations Simulink + SimMechanics + QUARC
Basic Joint Control 7DOF Leg w/ Fixed Base
The Jacobian Differential Kinematics ˙ x = J ˙ q
Computing the Jacobian Columns The “Geometric” Approach Recall
Computing the Jacobian Columns The “Geometric” Approach Revolute Joints Ji
= zi 1 ⇥ ( on oi 1) zi 1 Ji = zi 1 0 Prismatic Joints Recall
Why?
Motivating Example q dq QUARC Visualization System Timebase Kp KP(1:7)
Knee Pitch 60 Kd KD(1:7)*5 Hip Yaw 0 Hip Roll 0 Hip Pitch -30 EN 1 D2R D2R D2R D2R D2R D2R D2R Biped τ q q′ q′′ Ankle Yaw 0 Ankle Roll 0 Ankle Pitch -20 Direct Joint Control
Motivating Example Direct Joint Control
What about complex motions? Inverse Kinematics? Other Methods?
Jacobian Inverse Control Differential Kinematics ˙ q = J 1
˙ x
Jacobian Inverse Control 1. Compute Jacobian matrix w.r.t. end effector
2. Invert the matrix (pseudoinverse if ) 3. Obtain by multiplying 4. Obtain by integrating ˙ q q = Z ˙ q q ˙ q = J 1 ˙ x n > 6
Motivating Example Work Space Analysis QUARC Visualization Trajectory Reference Model
Configuration Joint Space Analysis Jacobian Inverse Transformation q′ = J-1x′ J x′ q q′ Jacobian Computation DQREF QREF q → x q x x dqref qref Jacobian Inverse Control
Motivating Example τ q q′ q′′ PD Controller q error
q′ error τ control erse Transformation q′ = J-1x′ q q′ an Computation Control Torques DQREF QREF q → x q q dq dqref qref Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Jacobian Transpose Control Differential Kinematics ⌧ = JT F
Gravity Compensation Center of Mass (COM) as an End Effector
Motivating Example Without Gravity Compensation
Computing the Jacobian Columns The “Geometric” Approach Recall
Center of Mass Equation Rigid Body Physics Recall xcom =
P ximi P mi
Gravity Compensation Center of Mass (COM) as an End Effector
Partial Center of Mass Rigid Body Physics
Jacobian Transpose Control 1. Compute the partial center of masses
for each joint 2. Form the COM Jacobian matrix 3. Obtain from the basic formula 4. Obtain by multiplying J com ~ FG = m~ g ~ F ⌧G ⌧ G = JT com ~ F G
Jacobian Transpose Control With Gravity Compensation
Whole Body Control A Jacobian-Based Approach ˙ q = 2
6 6 4 JCOM J1 J2 J3 3 7 7 5 1 ˙ x
Independent Leg Motions Two Jacobian’s Stacked: JL + JR
Shifting Balance Three Jacobian’s Stacked: JCOM + JL + JR
Questions?