Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ECE 486 Lecture
Search
Safwan Choudhury
June 06, 2012
Education
0
330
ECE 486 Lecture
Safwan Choudhury
June 06, 2012
Tweet
Share
More Decks by Safwan Choudhury
See All by Safwan Choudhury
Design and Gait Synthesis for a 3D Lower Body Humanoid
safwanc
1
73
Controlling Wheelchair Motion with Electroencephalography
safwanc
3
180
Accurate Determination of Joint Angles from Inertial Measurement Unit Data
safwanc
0
180
Gait Controller for 3D Active Dynamic Walking
safwanc
0
160
Bipedal Locomotion
safwanc
2
68
Learning Thought-Based Motor Control using Gaussian Processes
safwanc
0
130
Analysis of the Foot Placement Estimator
safwanc
0
210
Electromechanical Design
safwanc
0
150
Other Decks in Education
See All in Education
小学校女性教員向け プログラミング教育研修プログラム「SteP」の実践と課題
codeforeveryone
0
110
チーム開発における責任と感謝の話
ssk1991
0
230
社外コミュニティと「学び」を考える
alchemy1115
2
180
サンキッズゾーン 春日井駅前 ご案内
sanyohomes
0
910
ARアプリを活用した防災まち歩きデータ作成ハンズオン
nro2daisuke
0
170
『会社を知ってもらう』から『安心して活躍してもらう』までの プロセスとフロー
sasakendayo
0
260
データで見る赤ちゃんの成長
syuchimu
0
260
Common STIs in London: Symptoms, Risks & Prevention
medicaldental
0
140
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
160
万博非公式マップとFOSS4G
barsaka2
0
1.1k
JPCERTから始まる草の根活動~セキュリティ文化醸成のためのアクション~
masakiokuda
0
220
生態系ウォーズ - ルールブック
yui_itoshima
1
250
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1370
200k
Why Our Code Smells
bkeepers
PRO
339
57k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Designing Experiences People Love
moore
142
24k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Language of Interfaces
destraynor
161
25k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Context Engineering - Making Every Token Count
addyosmani
1
27
Practical Orchestrator
shlominoach
190
11k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
ECE 486: Robot Dynamics and Control Practical Applications of the
Jacobian Safwan Choudhury May 31, 2012
Brief Introduction
Bipedal Locomotion
Bipedal Robot 14 DOF Lower Body
q3 q2 q1
q4 q5
q7 q6
Electromechanical Design SolidWorks + Custom Toolchain
High Performance Direct Drive Micromo DC Motors + Misumi Drivetrain
Components
Machined on Campus Engineering Machine Shop (E3)
Full Dynamic Simulations Simulink + SimMechanics + QUARC
Basic Joint Control 7DOF Leg w/ Fixed Base
The Jacobian Differential Kinematics ˙ x = J ˙ q
Computing the Jacobian Columns The “Geometric” Approach Recall
Computing the Jacobian Columns The “Geometric” Approach Revolute Joints Ji
= zi 1 ⇥ ( on oi 1) zi 1 Ji = zi 1 0 Prismatic Joints Recall
Why?
Motivating Example q dq QUARC Visualization System Timebase Kp KP(1:7)
Knee Pitch 60 Kd KD(1:7)*5 Hip Yaw 0 Hip Roll 0 Hip Pitch -30 EN 1 D2R D2R D2R D2R D2R D2R D2R Biped τ q q′ q′′ Ankle Yaw 0 Ankle Roll 0 Ankle Pitch -20 Direct Joint Control
Motivating Example Direct Joint Control
What about complex motions? Inverse Kinematics? Other Methods?
Jacobian Inverse Control Differential Kinematics ˙ q = J 1
˙ x
Jacobian Inverse Control 1. Compute Jacobian matrix w.r.t. end effector
2. Invert the matrix (pseudoinverse if ) 3. Obtain by multiplying 4. Obtain by integrating ˙ q q = Z ˙ q q ˙ q = J 1 ˙ x n > 6
Motivating Example Work Space Analysis QUARC Visualization Trajectory Reference Model
Configuration Joint Space Analysis Jacobian Inverse Transformation q′ = J-1x′ J x′ q q′ Jacobian Computation DQREF QREF q → x q x x dqref qref Jacobian Inverse Control
Motivating Example τ q q′ q′′ PD Controller q error
q′ error τ control erse Transformation q′ = J-1x′ q q′ an Computation Control Torques DQREF QREF q → x q q dq dqref qref Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Jacobian Transpose Control Differential Kinematics ⌧ = JT F
Gravity Compensation Center of Mass (COM) as an End Effector
Motivating Example Without Gravity Compensation
Computing the Jacobian Columns The “Geometric” Approach Recall
Center of Mass Equation Rigid Body Physics Recall xcom =
P ximi P mi
Gravity Compensation Center of Mass (COM) as an End Effector
Partial Center of Mass Rigid Body Physics
Jacobian Transpose Control 1. Compute the partial center of masses
for each joint 2. Form the COM Jacobian matrix 3. Obtain from the basic formula 4. Obtain by multiplying J com ~ FG = m~ g ~ F ⌧G ⌧ G = JT com ~ F G
Jacobian Transpose Control With Gravity Compensation
Whole Body Control A Jacobian-Based Approach ˙ q = 2
6 6 4 JCOM J1 J2 J3 3 7 7 5 1 ˙ x
Independent Leg Motions Two Jacobian’s Stacked: JL + JR
Shifting Balance Three Jacobian’s Stacked: JCOM + JL + JR
Questions?