Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ECE 486 Lecture
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Safwan Choudhury
June 06, 2012
Education
0
340
ECE 486 Lecture
Safwan Choudhury
June 06, 2012
Tweet
Share
More Decks by Safwan Choudhury
See All by Safwan Choudhury
Design and Gait Synthesis for a 3D Lower Body Humanoid
safwanc
1
73
Controlling Wheelchair Motion with Electroencephalography
safwanc
3
180
Accurate Determination of Joint Angles from Inertial Measurement Unit Data
safwanc
0
180
Gait Controller for 3D Active Dynamic Walking
safwanc
0
160
Bipedal Locomotion
safwanc
2
68
Learning Thought-Based Motor Control using Gaussian Processes
safwanc
0
130
Analysis of the Foot Placement Estimator
safwanc
0
220
Electromechanical Design
safwanc
0
150
Other Decks in Education
See All in Education
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
10
11k
The World That Saved Me: A Story of Community and Gratitude
_hashimo2
3
510
Microsoft Office 365
matleenalaakso
0
2.1k
HTML5 and the Open Web Platform - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
2
3.2k
Measuring your measuring
jonoalderson
1
350
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
170
1021
cbtlibrary
0
400
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
570
TypeScript初心者向け完全ガイド
mickey_kubo
1
120
子どもが自立した学習者となるデジタルの活用について
naokikato
PRO
0
180
栃木県警サイバーセキュリティ研修会2026
nomizone
0
190
Featured
See All Featured
Paper Plane
katiecoart
PRO
0
46k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
Marketing to machines
jonoalderson
1
4.6k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Faster Mobile Websites
deanohume
310
31k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
The SEO identity crisis: Don't let AI make you average
varn
0
240
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
580
sira's awesome portfolio website redesign presentation
elsirapls
0
150
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
How to build a perfect <img>
jonoalderson
1
4.9k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Transcript
ECE 486: Robot Dynamics and Control Practical Applications of the
Jacobian Safwan Choudhury May 31, 2012
Brief Introduction
Bipedal Locomotion
Bipedal Robot 14 DOF Lower Body
q3 q2 q1
q4 q5
q7 q6
Electromechanical Design SolidWorks + Custom Toolchain
High Performance Direct Drive Micromo DC Motors + Misumi Drivetrain
Components
Machined on Campus Engineering Machine Shop (E3)
Full Dynamic Simulations Simulink + SimMechanics + QUARC
Basic Joint Control 7DOF Leg w/ Fixed Base
The Jacobian Differential Kinematics ˙ x = J ˙ q
Computing the Jacobian Columns The “Geometric” Approach Recall
Computing the Jacobian Columns The “Geometric” Approach Revolute Joints Ji
= zi 1 ⇥ ( on oi 1) zi 1 Ji = zi 1 0 Prismatic Joints Recall
Why?
Motivating Example q dq QUARC Visualization System Timebase Kp KP(1:7)
Knee Pitch 60 Kd KD(1:7)*5 Hip Yaw 0 Hip Roll 0 Hip Pitch -30 EN 1 D2R D2R D2R D2R D2R D2R D2R Biped τ q q′ q′′ Ankle Yaw 0 Ankle Roll 0 Ankle Pitch -20 Direct Joint Control
Motivating Example Direct Joint Control
What about complex motions? Inverse Kinematics? Other Methods?
Jacobian Inverse Control Differential Kinematics ˙ q = J 1
˙ x
Jacobian Inverse Control 1. Compute Jacobian matrix w.r.t. end effector
2. Invert the matrix (pseudoinverse if ) 3. Obtain by multiplying 4. Obtain by integrating ˙ q q = Z ˙ q q ˙ q = J 1 ˙ x n > 6
Motivating Example Work Space Analysis QUARC Visualization Trajectory Reference Model
Configuration Joint Space Analysis Jacobian Inverse Transformation q′ = J-1x′ J x′ q q′ Jacobian Computation DQREF QREF q → x q x x dqref qref Jacobian Inverse Control
Motivating Example τ q q′ q′′ PD Controller q error
q′ error τ control erse Transformation q′ = J-1x′ q q′ an Computation Control Torques DQREF QREF q → x q q dq dqref qref Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Motivating Example Jacobian Inverse Control
Jacobian Transpose Control Differential Kinematics ⌧ = JT F
Gravity Compensation Center of Mass (COM) as an End Effector
Motivating Example Without Gravity Compensation
Computing the Jacobian Columns The “Geometric” Approach Recall
Center of Mass Equation Rigid Body Physics Recall xcom =
P ximi P mi
Gravity Compensation Center of Mass (COM) as an End Effector
Partial Center of Mass Rigid Body Physics
Jacobian Transpose Control 1. Compute the partial center of masses
for each joint 2. Form the COM Jacobian matrix 3. Obtain from the basic formula 4. Obtain by multiplying J com ~ FG = m~ g ~ F ⌧G ⌧ G = JT com ~ F G
Jacobian Transpose Control With Gravity Compensation
Whole Body Control A Jacobian-Based Approach ˙ q = 2
6 6 4 JCOM J1 J2 J3 3 7 7 5 1 ˙ x
Independent Leg Motions Two Jacobian’s Stacked: JL + JR
Shifting Balance Three Jacobian’s Stacked: JCOM + JL + JR
Questions?