Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Philippe Mary - Reliability of radio-mobile sys...

Avatar for SCEE Team SCEE Team
December 02, 2010

Philippe Mary - Reliability of radio-mobile systems considering fading and shadowing channels

Avatar for SCEE Team

SCEE Team

December 02, 2010
Tweet

More Decks by SCEE Team

Other Decks in Research

Transcript

  1. DIRECTION GÉNÉRALE DE L’ARMEMENT 7-9 rue des Mathurins - 92

    221 Bagneux cedex Téléphone : +33 (0)1 46 19 50 00 - Fax : +33 (0)1 46 19 50 01 DGA/Comm - 01 - 10.2009 - Photos : DGA/C Reliability of radio-mobile systems considering fading and shadowing channels Philippe Mary IETR UMR 6164 CNRS, INSA de Rennes, France 2/12/2010 Philippe Mary 2/12/2010 1 / 32
  2. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions General Context

    Cellular mobile communications (GSM, UMTS, WLAN) Philippe Mary 2/12/2010 2 / 32
  3. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Motivations To

    increase the quality of services (QoS) of cellular networks : Considering both short and long term effect (multipath and average power variation) In the literature Signal processing community → multipath cancellation (equalization, channel coding, smart antennas...) ”Network” community → fight again the QoS variations due to the variation of the average power Minimal research effort has been allocated to the study of both effects Our work Study of a QoS criterium considering both short and long term effects Philippe Mary 2/12/2010 3 / 32
  4. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Purposes of

    the work Analytical performance of radio-mobile systems in fading channels and shadowing environment ++ Allows to point out quickly the behavior of a system ++ Allows to predict behavior x x Difficult for high complexe environment Coverage prediction over QoS constraint, best effort resource allocation. Philippe Mary 2/12/2010 4 / 32
  5. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Summary 1

    Channel models and assumption 2 Quick overview of SEP approximation 3 Outage considering fading and shadowing 4 Outage considering interference 5 Conclusion and further work Philippe Mary 2/12/2010 5 / 32
  6. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Short term

    effect/long term effect Philippe Mary 2/12/2010 6 / 32
  7. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Dealing with

    shadowing Work with ”outage” [Conti03] : Symbol error outage (SEO) (non-ergodic channel) Ps (O) = Pr (SEP ≥ P∗ s ) The important network design criterium is the packet error outage (PEO) Philippe Mary 2/12/2010 7 / 32
  8. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Fading channels

    model Flat fading channels The received power is : Pr ∝ αshad · α2 fading · Pt αfading : Short term effect (fast fading) Nakagami-m or Rice distributed Instantaneous SNR variation γs = α2 fading Es/N0 αshad : Long term effect (change after one or several packets) log-normally distributed Average SNR variation γs = αshad Es/N0, αshad = E α2 fading Average SNR −→ log-normally distributed Mean : µdB = E (10 log10 γs ) Standard deviation : σdB Philippe Mary 2/12/2010 8 / 32
  9. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Error modelisation

    in fading channels Average error probability (w.r.t. short term effects) : Classic form of the average SEP : Ps (E |γs ) = ∞ 0 Ps (E |γs, γs ) f (Q(√ γs )) pγs |γs (γs ) dγs Craig91 → alternative form for Gaussian function Q Allowed to derive closed-form SEP expressions in an unified way thanks to the moment generating function (MGF) of the SNR [Alouini04] : Ps (E |γs ) = 1 π (M−1)π/M 0 Mγs − gpsk sin2 θ dθ Philippe Mary 2/12/2010 9 / 32
  10. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Performance with

    shadowing Symbol error outage (SEO) : Ps (O |µ) = P (Ps (E |γs ) ≥ P∗ s (E |γs ) |µ) ⇐⇒ Pγs (O |µ) = P (γs ≤ γth |µ) Need of the SNR threshold : γth = f (P∗ s (E)) o` u f (P∗ s (E)) = P∗ s (E|γs )−1 The SEO is hence : Ps (O|µ) = Z γth=(P∗ s (E))−1 0 pγs (γs |µ) dγs = Q „µdB − 10 log10 γs (P∗ s (E)) σdB « Steps Find an accurate and simple expression for SEP Inverting this expression w.r.t. the SNR Estimate the SEO Philippe Mary 2/12/2010 10 / 32
  11. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Invertible approximation

    of the SEP Asymptotic analysis [Giannakis03] : Behavior of the SEP for high SNR Ps (E) ≈ (Gc γs )−Gd Gc Coding gain → horizontal shift compared to a reference Gd Diversity gain → error probability slop in high SNR regime x x Not accurate at low SNR Bounds of Conti et al. [Conti03] ++ Tight bounds of the average SEP thanks to bounds on the MGF of the SNR x x One kind of channel (Nakagami-m) x x No channel coding x x No interferences Philippe Mary 2/12/2010 11 / 32
  12. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Laplace method

    Can be used for Nakagami-m and Rice channels Integral approximation : I = y∈D h(y)e−λg(y)dy λ ∈ R, D ⊆ R The Laplace approximation of I is : ˜ I = 2π λ |g (y0 )| h(y0 )e−λg(y0) and I = ˜ I 1 + O λ−1 , λ → ∞ y0 = min |{z} y g(y) Philippe Mary 2/12/2010 12 / 32
  13. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Scenario A

    simple point-to-point SISO system Goal : Estimated the probability that the SEP exceeds the threshold Philippe Mary 2/12/2010 13 / 32
  14. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions SEP approximation

    in Nakagami-m channels (1/3) The exact average SEP (M-PSK, M-QAM) can be written as [Shin04] : Ppsk s (E |γs ) = x (γs )m „ k1 · 2F1 „ m, 1 2 ; m + 1; x (γs ) « + k2 · F1 „ 1 2 , m, 1 2 − m; 3 2 ; y (γs ) , 1 − gpsk «« Pqam s (E |γs ) = x1 (γs )m k3·2F1 „ m, 1 2 ; m + 1; x1 (γs ) « −x2 (γs )m k4·F1 „ 1, m, 1; m + 3 2 ; x2 (γs ) x1 (γs ) , 1 2 « Philippe Mary 2/12/2010 14 / 32
  15. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions SEP approximation

    in Nakagami-m channels (2/3) The Gauss hypergeometric function can be expressed as 2F1 m, 1 2 ; m + 1; x = B(m, 1)−1 1 0 tm−1(1 − tx)−1/2dt, Laplace approximation by choosing [Wood03] : h(t) = B (m, 1)−1 t−1, g(t) = − m ln t − 1 2 ln(1 − xt) Philippe Mary 2/12/2010 15 / 32
  16. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions SEP approximation

    in Nakagami-m channels (3/3) Theorem (SEP approximation) In a flat Nakagami-m fading channel, the average SEP of M-PSK/M-QAM signals is well approached by : Ps(E|γs ) ≈ kmod xm √ 1 − x˜ t ; ∀γs with ˜ t = m/(m + 1), x = 1/ (1 + gmod γs /m), gmod and kmod are modulation dependent constants. Philippe Mary 2/12/2010 16 / 32
  17. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Accuracy of

    the approximation Philippe Mary 2/12/2010 17 / 32
  18. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions SEP inversion

    Theorem (SEP inversion) Under the same conditions as previously, the average SNR is : γs (P∗ s (E)) = c0 P∗ s (E) − 1 m 1 − c1P∗ s (E) 1 m − 1 2m − k− 1 m mod Sketch of proof. Solving in [0, 1] : (kmod )2 x2m + (P∗ s (E))2 ˜ tx − (P∗ s (E))2 = 0 Constructing the series : 8 > < > : x0 = 0, xn+1 = „ P∗ s (E) kmod « 1 m `1 − ˜ txn ´ 1 2m We can show that {xn}n∈N is converging towards xs Philippe Mary 2/12/2010 18 / 32
  19. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions SEP approximation

    in Rice channel Propagation with a specular component No closed-form solutions : Ppsk s (E |γs ) = 1 π (M−1)π/M 0 Mγs − gpsk sin2 θ dθ Pqam s (E |γs ) = 4g π π/2 0 Mγs − gqam sin2θ dθ − 4g2 π π/4 0 Mγs − gqam sin2θ dθ with Mγs − gmod sin2 θ = (1+K)sin2(θ) (1+K)sin2(θ)+gmod γs exp − gmod Kγs (1+K)sin2(θ)+gmod γs Philippe Mary 2/12/2010 20 / 32
  20. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions SEO Estimation

    We can show that : γs (P∗ s (E)) = K+K2 gmod W0 (√ πP∗ s (E)KeK ) − 1+K gmod P∗ s = 10−2 Philippe Mary 2/12/2010 21 / 32
  21. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Systems with

    channel coding Goal : Considering the PEO ⇒ PEP inversion w.r.t. SNR Assumptions : Hard decision decoding Philippe Mary 2/12/2010 22 / 32
  22. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Block codes

    Hamming and Golay codes Philippe Mary 2/12/2010 23 / 32
  23. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions PEO estimation

    Nakagami-m fading Packets ≈ 4600 bits, 8-PSK signal PER target of 10−1 ; Pb =   P∗ m (E)(t+1)B(t+1,J−t) „ 1−[P∗ m (E)(t+1)B(t+1,J−t)] 1 t+1 ˜ y «J−t−1   1 t+1 and Pp (E) = 1 − (1 − Pm (E))N/k Philippe Mary 2/12/2010 24 / 32
  24. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions STBC MIMO

    systems The output SNR is : γSTBC = ||H||2 F ntR γs γs = E0/N0 The MGF of SNR can be shown to be (without correlation) : MγSTBC = (Mγs )nt nr Philippe Mary 2/12/2010 25 / 32
  25. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions V-BLAST MIMO

    systems ZF linear receiver. The substream SNR is [Gore02] : γk = γs [HH H]−1 kk In Rayleigh channel : Z = HHH → CWnt (nr , 0, Σnt ) We can shown that : Mγk = (Mγs )nr −nt +1 Philippe Mary 2/12/2010 26 / 32
  26. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions SEP approximation

    with one co-channel interference The exact SEP is obtained by averaging the conditional SEP w.r.t. the INR Ps (E) = ∞ 0 Ps (E|γi ) pγi (γi ) dγi The average SEP (M-PSK, M-QAM) with one co-channel interference in Rayleigh channel is bounded by : Ps (E|γd , γi ) ≤ 2kmod 1 + gmod γd gmod γd 1 + γi γi + 2 (1 + gmod γd ) Philippe Mary 2/12/2010 27 / 32
  27. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Accuracy of

    the approximation QPSK Philippe Mary 2/12/2010 28 / 32
  28. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Outage probability

    with shadowing and co-channel interference Shadowing → both SNR γd and INR γi are random variables We can show the following result : Theorem γd et γi are two random variables i.i.d. and log-normally distributed. The SEO of the desired signal with one co-channel interference is : P (Ps (E) > P∗ s ) = Z ∞ 0 10/ log (10) σi √ 2πγi e − (10 log10 γi −µi )2 2σ2 i Q „ µd − 10 log10 γth (P∗ s , γi ) σd « dγi where γth (P∗ s , γi ) is the needed average SNR to reach the QoS target P∗ s knowing the average INR γi . Philippe Mary 2/12/2010 29 / 32
  29. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Conclusions Tools

    to study the performance of wireless communications in a realistic environment (Fading + Shadowing) When shadowing is considered the channel is non-ergodic The PEO is a measure of the reliability that a wireless network can offer under constraint of QoS (average PEP) Applications Coverage prediction (4G Cellular networks, · · · ) Resource allocation considering an average target PEP with a certain outage probability Philippe Mary 2/12/2010 30 / 32
  30. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Further works

    With coding How do we deal with capacity approaching codes (LDPC, Turbo, · · · ) ? Quantify the tradeoff Energy consumption/PEO reduction Connectivity study in access network Active links : average PEP < PEP target Defined the connectivity in function of the PEP target Extension to multi-hop and cooperative networks Philippe Mary 2/12/2010 31 / 32
  31. Intro Models Approx SEP SEO,PEO MIMO Interference Conclusions Publications [1]

    P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, M. Arndt, ”BPSK Bit Error Outage over Nakagami-m Fading Channels in Lognormal Shadowing Environments”, IEEE Commun. Letters, 2007 [2] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, M. Arndt, ”M-ary Symbol Error Outage over Nakagami-m Fading Channels in Shadowing Environments”, IEEE Trans. on Commun., 2009 [3] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, ”Symbol Error Outage Analysis of MIMO OSTBC Systems over Rice Fading Channels in Shadowing Environments”, Minor Revisions for IEEE Trans. on Wireless Commun. [4] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, ”Symbol Error Outage for Spatial Multiplexing Systems in Rayleigh Fading Channel and Lognormal Shadowing”, In Proc. of IEEE Spawc 2009, Italy, 2009 [5] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, ”Packet Error Outage for Coded Systems Experiencing Fading Channels and Interference in Shadowing Environment”, In preparation Philippe Mary 2/12/2010 32 / 32