Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
dbtの概要
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Shasha
June 09, 2022
Technology
1
1.1k
dbtの概要
Shasha
June 09, 2022
Tweet
Share
More Decks by Shasha
See All by Shasha
20221004_AKIBA.SaaS
shasha48
0
8
MDSを加速する 〜Fivetranとプロフェッショナルサービス〜
shasha48
0
8
データ収集と整理 〜クラウドデータパイプラインの作成〜
shasha48
0
82
データドリブンな小売戦略 〜Snowflakeによるパーソナライズの強化〜
shasha48
0
43
dbtとLookerの 境界線を定めます!
shasha48
0
130
信頼できるデータを届け、使うのは?
shasha48
0
290
DataObserbabilityDevIO2023.pdf
shasha48
0
1k
データ分析について考える - 私が考えるデータ分析の必要性
shasha48
0
930
Other Decks in Technology
See All in Technology
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.9k
OpenShiftでllm-dを動かそう!
jpishikawa
0
110
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
180
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
5.6k
Context Engineeringの取り組み
nutslove
0
360
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.9k
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
140
Featured
See All Featured
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
86
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
66
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
GitHub's CSS Performance
jonrohan
1032
470k
Between Models and Reality
mayunak
1
190
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
180
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
A Tale of Four Properties
chriscoyier
162
24k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
180
Transcript
dbtの概要 dbt×Fivetran×SnowflakeによるModern Data Stack~データ 活用までの準備を楽々に~ 2022年6月9日 アライアンス統括部 堀本 理紗
2 自己紹介 氏名 堀本 理紗(ブログは紗紗) 担当業務 Looker、Snowflakeのプロサービス・プリセールス dbtも頑張りたい今日このごろ やめたいけどやめられない インスタパトロール。
動物系から単純作業、ライフハック系などエンドレス
3 本日お話しすること • ETLの時代の話 • ELTとMDS • データモデリングの手法と問題点 • T(変換)の重要性
• dbtが解決すること
4 ETLの時代(2010年代) • ETL ◦ Extract(抽出) ◦ Transform(変換) ◦ Load(ロード)
• データ分析界隈の関心 ◦ ETLをどのように構築するか ◦ どのようにスケールさせるか ◦ ストレージのコストを抑える ◦ DWHのパフォーマンスをあげる方法 DWH ETL Data Source
5 ETLの時代(2010年代) • データ分析界隈の関心 ◦ ETLをどのように構築するか ◦ どのようにスケールさせるか ◦ ストレージのコストを抑える
◦ DWHのパフォーマンスをあげる方法 DWH ETL Data Source こんなことをするために データアナリストになったのではな い!!
6 ELTの時代(2020年代)とMDS • DWHの性能向上で変換(T)の前にデータをロード • Fivetran等のデータインジェストツールによる抽出(E)とロード(L)の自 動化 • データ分析基盤関連のSaaSがさまざま登場
7 MDSとは? • Modern Data Stack • SaaSを組み合わせてデータ分析基盤を構築 • SaaSの組み合わせに正解はない
• それぞれの製品同士の横のつながりがある
8 クラメソが提供するMDS
9 2010年代から変化していないデータモデリング • その1:独自開発コード ◦ ビジネスロジックを表現するのにエネルギーが要る ◦ アクセスに難あり(難しい処理はPython) ◦ 新しいデータセットの作成に3〜4週間かかってしまう
◦ 社内インフラをホスティングする必要がある • その2:GUIでポチポチ ◦ 高額 ◦ 学習コストが高い ◦ アクセスに難あり(Adminなどに限られる)
10 従来のデータモデリングの問題点 • 都市伝説と化すデータの民主化 ◦ 欲しいデータがすぐに手に入らない ◦ そのデータが信頼できるかわからない • 複雑怪奇で属人的なSQL地獄
◦ ELTでSQLでデータにアクセス可能に ◦ 野良SQL、テーブル大量発生
11 T(変換)の重要性 • データ型のクリーニング
• 複数のシステムのデータを統合 • データのフィルタリング • 論理削除されているデータの除外 • キレイなデータをそれぞれ結合
12 dbtの取り組み • dbtの指針その1 ◦ SQLさえ知っていれば誰でもデータパイプラインを開発できる • dbtの指針その2 ◦ ソフトウェアエンジニアのようにデータパイプラインを開発でき
る ▪ バージョン管理、自動テスト、ドキュメンテーション、再利用性
13 dbtが提供するこれからのデータモデリング ・SELECT文を知っていれば、誰でもデータマート開発を行えるサービス ・特別な知識&スキル不要で、アプリ開発の手法を取り入れた開発が可能 (バージョン管理、CI/CD、自動テスト、ドキュメント管理、etc) アプリ開発の手法を取り入れている ・Gitと連携 ・継続的インテグレーション ドキュメントの自動生成 ・データの定義や依存関係等がわかる
・データカタログの役割も Jinjaで高度な処理を開発できる ・SQLだけでは実現できない処理の実現 ・マクロとして処理をモジュール化、再利用可 データに対してテストを実行できる ・not nullや参照整合性等を自動でテスト可能 ・Jinjaで、オリジナルのテストも作成可能 主要なDWHに対応 ・Amazon Redshift、Snowflake、Google BigQuery SQLで開発できる ・必要なのはSELECT文だけ ・プログラミング言語の学習は不要 1 6 5 3 4 2
14 まとめ dbtってすごくいい... • この10年で進化のなかったデータモデリングに新たな手 法を提案するツール • データカオス、バイバイ👋 • ハロー、データの民主化🙌
15