L Ͱ͚݅Δ͜ͱͰͯ͢ͷ backdoor path ͕ด͡Δ • L ͷதʹɺA ͷ descendant ؚ͕·Εͳ͍ Conditional exchangeablity ⇐⇒ backdoor ج४ Failthfulness ͱ Technical Pont 7.1 Ͱٞ͢Δ݅ͷԼͰ Ya A | L ⇐⇒ L ͕ backdoor ج४Λຬͨ͢ 14
path ͕ଘࡏ͠ͳ ͍ɻMarginal exchangeability Ya A ͕Γཱͭɻ ະଌఆͷަབྷ͕ͳ͍ (no unmeasured confounding) ަབྷ͕͋Δ͕ɺL(ଌఆ͞Ε͍ͯͯɺA ͷ descendant Λؚ· ͳ͍) Ͱ͚݅Δ͜ͱͰͯ͢ͷ backdoor path Λด͡Δ ͜ͱ͕Ͱ͖Δ߹ɺconditional exchangeability Ya A | L ͕ ΓཱͭɻL ͷ͜ͱΛ sufficient set for confounding adjustment ͱݺͿɻ 15
Figure 7.4 A Y L U2 U1 Figure 7.4’ ͜ͷ߹ • ަབྷͳ͍ • Backdoor path ͋Δ͕ collider L ʹΑΓด͍ͯ͡Δ Ͱ͋ΓɺYa A ٯʹ L Ͱ͚݅ͮΔͱ • Backdoor path ͕։͘ ͷͰ Ya A | L Γཱͨͳ͍ (selection bias)ɻ 18
U Figure 7.3 • 7.1 Ͱ L ڞ௨ͷݪҼͰ͋Γ ަབྷҼࢠ • 7.2-7.3 Ͱ L ڞ௨ͷݪҼͰ ͳ͍͕ަབྷҼࢠ • 7.4 Ͱ L ަབྷҼࢠͰͳ͍ U ͕ଌఆ͞ΕΕɺU Ͱ open backdoor path Λด͡Δ͜ͱ͕ Ͱ͖ΔͷͰɺU ͷԼͰ L ަབྷҼࢠʹͳΒͳ͍ɻ͜ͷΑ͏ ʹަབྷઈରతͳ֓೦͕ͩɺަབྷҼࢠ૬ରతͳ֓೦Ͱ͋Δɻ 22
| a Ya L U Figure 7.9 A: ΞεϐϦϯɺY: ଔத L: ৺࣬ױɺU:ಈ຺ߗԽ ΞεϐϦϯ͕ॲํ͞ΕΔॠؒʹɺॲ ํᝦΛճऩ͢Δͱ͍͏Ծతͳੈք Λߟ͑Δɻ • શһ a = 0 ͱ͍͏ single intervention Λड͚Δ • Ծతͳੈքʹ͓͚Δ Y Ya=0 • A natural value of treatment ͳ ͷͰྲྀΕࠐΉҹͦͷ·· • a A ͔Βग़ΔҹΛҾ͖ܧ͙ • A ͔Β a ͷҹͳ͍ 29
Figure 7.9 A | a Ya L U2 U1 Figure 7.10 L Ͱ͚݅ͮΔͱ A ͱ Ya d-separate ͞Ε͍ͯΔͷͰ Ya A | L Figure 7.4 Λ SWIG ʹมͨ͠ Figure7.10 ͰɺL Ͱ͚݅ͮͣʹ d-separate ͞Ε͍ͯΔͷͰ Ya A SWIG ͰɺBackdoor ج४ͱ Ya A | L ͱͷ͕ؔΘ͔Γ͍͢ 30
(Technical Point 7.3) • Instrumental variable estimation (Chapter 16) • The front door criterion (Technical Point 7.4) ͳͲʹΑͬͯରॲ͢Δ͜ͱ͕Ͱ͖Δ͕ɺ͜ΕΒͷख๏ conditional exchangeability ͱಉ༷ʹɺݕূෆՄೳͳԾఆΛඞཁ ͱ͢ΔͨΊɺख๏ΛબͿࡍʹɺͲͷԾఆ͕ΑΓ͔֬Β͍͠ ͔Λߟ͑Δඞཁ͕͋Δɻ 33
ͨΒ͔͕͢Θ͔Δɻ A Y L Figure 7.1 L → A : +, L → Y : + ͷͱ͖ɺ+ ʹ bias L → A : −, L → Y : − ͷͱ͖ɺ+ ʹ bias L → A : +, L → Y : − ͷͱ͖ɺ− ʹ bias L → A : −, L → Y : + ͷͱ͖ɺ− ʹ bias 37
Figure 7.6 Figure 7.6 ʹ͓͍ͯ • Ya A | L, L2 • Ya A | L1 ͕Γཱ͕ͭɺ • Ya A | L • Ya A | L2 Γཱͨͳ͍ɻैͬͯɺ ʮL ͷΈʯ ɺ ͋Δ͍ʮL2 ͷΈʯͰҼՌޮՌ ࣝผͰ͖ͣɺ ʮL ͱ L2 ʯ͋Δ͍ ʮL1 ʯ͕ଌఆ͞ΕΔඞཁ͕͋Δɻ 39
| a La Ya U Figure 7.12 L • Backdoor path Λด͡Δ͕ • A ͷ descendant ͳͷͰɺYa A | L Γཱͨ ͳ͍ɻ SWIG Λඳ͘ͱɺΓཱͭͷ Ya A | La Ͱ͋Δ͜ͱ͕Θ͔Δɻ ॏཁͳͷʮL ͕ A ΑΓ࣌ؒతʹ લ͔ޙ͔ʯͰͳ͘ɺʮL ͕ A ͷ descendant ͔൱͔ʯ Ͱ͋Δɻ 42
Ͱ backdoor path Λด͡Δͷ ʹ U Ͱ͚݅ͮΔඞཁ͕͋Δ͕ɺU ͕ະଌఆͰ front door formula Λ༻ ͍ͯ Pr[Ya = 1] ΛࣝผͰ͖Δɻ A ʹΑΔӨڹ M ͔ΒͷΈड͚ΔͷͰɺPr[Ya = 1] ∑ m Pr[Ma = m]Pr[Ym = 1 | Ma = m] = ∑ m Pr[Ma = m] A MaΑΓࣝผ Pr[Ym = 1] Ym M|A ΑΓࣝผ (∵ Ma Ym) = ∑ m Pr[M = m|A = a] ∑ a′ Pr[Y = 1|M = m, A = a′]Pr[A = a′] 45