Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-estimation for time-varying treatments(Causal...
Search
Shuntaro Sato
November 25, 2020
Science
0
3.1k
G-estimation for time-varying treatments(Causal inference: What if, Chapter 21-2)
Keywords: 因果推論, Time-varying, G-estimation, Censoring
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
200
仮説検定とP値
shuntaros
8
10k
Target trial emulationの概要
shuntaros
2
3.3k
Win ratio その2
shuntaros
0
510
Win ratioとは何か?
shuntaros
0
2.8k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.1k
「回帰分析から分かること」と「変数選択」
shuntaros
16
20k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.6k
自己対照デザイン:ケースクロスオーバーデザイン・ケースタイムコントロールデザイン
shuntaros
1
2.8k
Other Decks in Science
See All in Science
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
490
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
590
機械学習 - SVM
trycycle
PRO
1
870
CV_5_3dVision
hachama
0
140
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.2k
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
290
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
540
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
530
データベース03: 関係データモデル
trycycle
PRO
1
240
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
560
学術講演会中央大学学員会府中支部
tagtag
0
300
データベース01: データベースを使わない世界
trycycle
PRO
1
740
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Visualization
eitanlees
146
16k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
KATA
mclloyd
31
14k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
It's Worth the Effort
3n
185
28k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
GitHub's CSS Performance
jonrohan
1031
460k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Building Adaptive Systems
keathley
43
2.7k
Transcript
G-estimation for time-varying treatments & Censoring Causal Inference: What if
Chapter 21(後半) 担当︓KRSK (@koro485)
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 2
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 3
Time-varying Treatments ⽬的︓複数時点での介⼊の効果 Ø 例︓[!!"#,!""# − !!"%,!""%] Ø 「全員がすべての時点で治療を受けた(always-treat)vsずっ と受けなかった(never-treat)」
Time-fixed Treatments ⽬的︓1時点での介⼊の効果 Ø 例︓[!"# − !"%] Ø 「全員が(ある⼀時点で)治療を受けたvs受けなかった」 4
仮定︓Sequential exchangeability Ø Yā ⫫ Ak | L̄ k ,
A ̅ k-1 Ø Exchangeability for each treatment conditional on past covariate & treatment A0 L1 L0 A1 Y A0 |a0 L1 a0 L0 A1 a0|a1 Ya0,a1 例︓⼆時点の場合 Ø Ya0,a1 ⫫ A1 | L1 ,L0 ,A0 Ø Ya0,a1 ⫫ A0 | L0 5
なぜtime-varying treatmentsか︖ Ø 最適な治療regimeの効果検証(どのように複数時点での介⼊ を続けていけばよいか︖) Ø 曝露因⼦が時間によってで⼤きく変化する/アドヒアランス が悪いとき、time-fixedの"効果”は過⼩推定の可能性あり Ø例︓「ライザップ的⾷⽣活の効果」 6
g-methods Ø g-formula (a.k.a., g-computation) Ø IPW of marginal structural
model Ø g-estimation of structural nested models • Sequential exchangeabilityのもと、time-varying treatmentsの因果効果を推定可能 • 異なるモデルの仮定 7
g-formula for time-varying treatments & ̅ ' [| ̅ =
+ , + = ̅ ] 1 ("% ) (( |+ (*# , ̅ (*# ) ①“過去”を条件付けた アウトカムに対するモデル ②”過去”のjoint distribution に対するモデル(複数) Ø R package: gfoRmula (Lin et al 2019) Ø もしくはICE (iterated conditional expectation) g-computation (e.g., TMLE) 8
̅ + = 1 ("% # 1 (( | ̅
(*# , + ( ) IPW for time-varying treatments ①“過去”を条件付けた各時点の治療に対するモデル E , ! = -. [| ̅ ] ②Marginal Structural Model (過去の治療歴のみを条件づけたweightedアウトカム モデル) Marginal Effectに興味があるとき 9
̅ + = 1 ("% # (( | ̅ (*#
, ) (( | ̅ (*# , + ( ) IPW for time-varying treatments ①“過去”を条件付けた各時点の治療に対するモデル ②Marginal Structural Model (過去の治療歴+Vを条件づけたweightedアウトカム モデル) E , !| = -. [| ̅ , ] ベースライン共変量Vによる効果修飾に興味があるとき ①Vと過去の治療歴を 条件付けた各時点の 治療に対するモデル 10
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 11
g-estimation for time-fixed treatments Ø Conditional effectを推定 Ø Causal “effect”を直接モデル化
(Structural Nested Mean Model) [! − !"%|] = # (Lによる効果修飾なし) [! − !"%|] = # + / ∗ (Lのsubset/L以外のベースライン変数Vによる効果修飾 あり) $POEJUJPOBM&YDIBOHFBCJMJUZ Ya⫫A|L ΛԾఆ 12
g-estimation for time-fixed treatments 1. ! − !"% = #
2. !"% = ! − # = − # (by consistency) 3. H(0) = − 0 6. = 1 , H 0 = % + # H 0 + / L 7. # = 0となる0をgrid searchで⾒つける 4. もし 0 = # なら H(0) = !"% 5. Conditional Exchangeabilityより Ya⫫A|L 13
g-estimation for time-fixed treatments 1. Structural Nested Mean Model [!
− !"%|] = # (Lによる効果修飾なし) 2. Treatment Model = 1 , H 0 = % + # H 0 + / L 14
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 15
g-estimation for time-varying treatments Ø まず⼆時点の場合を考える (p269) Ø Sequential exchangeability
A0 L1 A1 Y A0 |a0 L1 a0 A1 a0|a1 Ya0,a1 Ø Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 16
g-estimation: Step 1 Ø Structural ”Nested” Mean Modelsを設定 1. [!!,!""%
− !!"%,!""%] = % % 2. [!!,!" − !!,!""% # !! = # , % = % = # (## + #/ # + #1 % + #2 % # ) A0 |a0 L1 a0 A1 a0|a1 Ya0,a1 " ͷޮՌͷϞσϧ ͜ͷྫͰ- ͕ͳ͍ʣ " ͷޮՌͷϞσϧ “過去”による効果修飾 Ø . の推定がゴール︕ Ø 各時点の治療のConditional effectを推定 17
① !!"%,!""% = !!,!""% − % % ② !!,!""%= !!,!"
− ## # + #/ # # !! + #1 % # + #2 % # # !! ①+② !!"%,!""%= !!,!" − I J ## # + #/ # # !! + #1 % # + #2 % # # !! − % % g-estimation: Step 2 Ø 個⼈レベルに変換 Ø !!"%,!""% に対する1つの⽅程式をつくる 18
!!"%,!""% = !!,!" − ## # + #/ # #
!! + #1 % # + #2 % # # !! − % % = − ## # + #/ # # + #1 % # + #2 % # # − % % g-estimation: Step 3 Ø ConsistencyでデータとStep2の式をリンク ∗ = − ## ∗ # + #/ ∗ # # + #1 ∗ % # + #2 ∗ % # # − % ∗% Ø (∗)をつくる ະͷύϥϝʔλ 1. ∗͕ܾ·ΕաڈͷA, Lͷσʔλ͔Β (∗)֤ݸਓʹ ରͯ͠ܭࢉՄೳ 2. ∗=ͳΒ(∗) = = !!"%,!""% 19
g-estimation: Step 4 Ø Sequential Exchangeabilityを使う Ø Treatment Modelをつくる Ø
Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 Ø ⫫ A1 | L1 ,A0 Ø ⫫ A0 logit # # , % , ∗ = % + ∗ ( + % + # + # % ) + 8 # ∗ の係数の推定値が0となるような∗(5つの)を⾒つける (Grid Search) logit % ∗ = % + ∗ 20
g-estimation: おまけ Treatment modelを使わないで. を推定可能 !!"%,!""%= − ## # +
#/ # # + #1 % # + #2 % # # − % % E +!,% % , # , # = E % , # , # −#,# # − #,/ # # − #,1 % # − #,2 % # # Ø Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 Ø Structural Nested Mean Model Ø Conditional Exchangeability 平均 21
g-estimation: おまけ Ø Treatment modelを使わない推定 Ø Conditional Exchangeabilityより Ø Ya0,a1
⫫ A1 | L1 ,A0 Ø E "!,$ $ , % , % = 0 = E "!,$ $ , % , % = 1 Ø 84 = 84- %,% , 52 = 52- %,% - %,& Ø %,% =0, %,& = 0 E "!,$ $ , % , % = E $ , % , % −%,% % − %,& % % − %,' $ % − %,( $ % % A0 L1 A1 Y "!,$ $, %, % 0 0 0 84 84 0 0 1 84 84-%,% 0 1 0 52 52 0 1 1 52 52-%,% -%,& Table 21.1 (p257) & Table 21.2 (p270)より Ø 現実にはexposure/covariate historyのパターンが多い→モデル Ø Linear modelの場合はclosed form (Technical Point 21.5) 22
g-estimation for time-varying treatments Ø K時点の場合を考える Ø Sequential exchangeability A0
L1 A1 L2 Ø Yā ⫫ Ak | L̄ k , A ̅ k-1 L0 Lk Ak LK AK Y … … 23
g-estimation: Step 1 Ø Structural ”Nested” Modelsを設定 , !#,%#$" −
, !#%",%# = ( ( + (*# , + ( , ! , "L ͷޮՌͷϞσϧ 1. β (ak の効果は⼀定) 2. β0 + β1 k (ak の効果は時間と共に線形変化) 3. β0 + β1 ak-1 + β2 Lk ā + β3 a0 Lk ā (ak の効果は直前のLk とak-1 のみに依存) ( + (*# , + ( , ! , の例 Bias-variance trade-off!! Ø 各時点の治療のConditional effectを推定 24
g-estimation: Step 2 , !#,%#$" − , !#%",%# = (
( + (*# , + ( , ! , 9 % = , ! − & ("% ) ( ( + (*# , + ( , ! , Ø 9 %に対する1つの⽅程式をつくる Ø 以下は例として( + (*# , + ( , ! , = (a: の効果は⼀定)のとき 9 % = , ! − & ("% ) ( 25
g-estimation: Step 3 Ø ConsistencyでデータとStep2の式をリンク ∗ = − ∗ &
("% ) ( Ø (∗)をつくる ະͷύϥϝʔλ 1. ∗͕ܾ·ΕաڈͷAͷσʔλ͔Β (∗)֤ݸਓʹର ͯ͠ܭࢉՄೳ 2. ∗=ͳΒ(∗) = = 9 % 9 % = , ! − & ("% ) ( = − & ("% ) ( 26
g-estimation: Step 4 Ø Sequential Exchangeabilityを使う Ø Treatment Modelをつくる Ø
Yā ⫫ Ak | L̄ k , A ̅ k-1 すべての時点kにおける治療Ak に対して、 ∗ の係数の推定値 が0となるような∗を⾒つける 1PPMFE-PHJTUJD3FHSFTTJPOͰҰؾʹϞσϧԽ Ø ⫫ Ak | L̄ k , A ̅ k-1 logit ( ( ( , ̅ (*# , ∗ = % ∗ + ( ̅ (*# , ( ( 各時点でのfunctional formが同じと仮定 27
g-estimation: Step 5 Ø [9 %]を推定する Ø [ , !]を推定する
9 % = − & ("% ) ( ( + (*# , + ( , 9 % = − & ("% ) ( Ø 各時点での効果を ) $ に⾜していく Ø 効果が過去の 1 *+% , - に依存するときには、 1 * , -をシミュレート (Technical Point 21.6) , ! = 9 %+ & ("% ) ( ( + (*# , + ( , ! , , ! = 9 % + & ("% ) ( ( + (*# , + ( , ! , = の場合 28
g-estimation まとめ Ø * 1 *+% , 1 * ,
-, にtreatment/covariate historyが含まれる(各時点 の治療効果が過去の変数によって変わる)ときは複数 Ø Pooled logisticを使うためにはconstant functional form 4USVDUVSBM/FTUFE .FBO .PEFMT , !#,%#$" − , !#%",%# = ( ( + (*# , + ( , ! , logit ( ( ( , ̅ (*# , ∗ = % ∗ + ( ̅ (*# , ( ( 5SFBUNFOU)JTUPSZ.PEFM $PWBSJBUF)JTUPSZ.PEFM Ø * 1 *+% , 1 * , -, に過去のLが含まれている時 Ø Pooled logisticを使って 1 * , -をシミュレート 29
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 30
Time-varying Censoring [ , !, ̅ ;"%|+ ] = ̅
= + , + , ̅ = + 0 !,;"% = = [| = , , = 0] Ø Time-fixed Treatment Ø Time-varying Treatment Ø Time-varying treatment & time-varying censoringへのjoint interventionと考えられる Ø Time-varying censoringの対応にもg-methodがつかえる 31