Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-estimation for time-varying treatments(Causal...
Search
Shuntaro Sato
November 25, 2020
Science
0
3.2k
G-estimation for time-varying treatments(Causal inference: What if, Chapter 21-2)
Keywords: 因果推論, Time-varying, G-estimation, Censoring
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
単施設でできる臨床研究の考え方
shuntaros
0
2.7k
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
220
仮説検定とP値
shuntaros
8
10k
Target trial emulationの概要
shuntaros
2
3.4k
Win ratio その2
shuntaros
0
520
Win ratioとは何か?
shuntaros
0
2.9k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.1k
「回帰分析から分かること」と「変数選択」
shuntaros
16
20k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.7k
Other Decks in Science
See All in Science
mathematics of indirect reciprocity
yohm
1
180
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
130
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
190
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
130
データマイニング - ウェブとグラフ
trycycle
PRO
0
170
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
610
データベース10: 拡張実体関連モデル
trycycle
PRO
0
980
学術講演会中央大学学員会府中支部
tagtag
0
300
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
610
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
Featured
See All Featured
Become a Pro
speakerdeck
PRO
29
5.5k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Designing Experiences People Love
moore
142
24k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
It's Worth the Effort
3n
187
28k
Embracing the Ebb and Flow
colly
87
4.8k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
GitHub's CSS Performance
jonrohan
1032
460k
The Language of Interfaces
destraynor
161
25k
Faster Mobile Websites
deanohume
309
31k
Transcript
G-estimation for time-varying treatments & Censoring Causal Inference: What if
Chapter 21(後半) 担当︓KRSK (@koro485)
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 2
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 3
Time-varying Treatments ⽬的︓複数時点での介⼊の効果 Ø 例︓[!!"#,!""# − !!"%,!""%] Ø 「全員がすべての時点で治療を受けた(always-treat)vsずっ と受けなかった(never-treat)」
Time-fixed Treatments ⽬的︓1時点での介⼊の効果 Ø 例︓[!"# − !"%] Ø 「全員が(ある⼀時点で)治療を受けたvs受けなかった」 4
仮定︓Sequential exchangeability Ø Yā ⫫ Ak | L̄ k ,
A ̅ k-1 Ø Exchangeability for each treatment conditional on past covariate & treatment A0 L1 L0 A1 Y A0 |a0 L1 a0 L0 A1 a0|a1 Ya0,a1 例︓⼆時点の場合 Ø Ya0,a1 ⫫ A1 | L1 ,L0 ,A0 Ø Ya0,a1 ⫫ A0 | L0 5
なぜtime-varying treatmentsか︖ Ø 最適な治療regimeの効果検証(どのように複数時点での介⼊ を続けていけばよいか︖) Ø 曝露因⼦が時間によってで⼤きく変化する/アドヒアランス が悪いとき、time-fixedの"効果”は過⼩推定の可能性あり Ø例︓「ライザップ的⾷⽣活の効果」 6
g-methods Ø g-formula (a.k.a., g-computation) Ø IPW of marginal structural
model Ø g-estimation of structural nested models • Sequential exchangeabilityのもと、time-varying treatmentsの因果効果を推定可能 • 異なるモデルの仮定 7
g-formula for time-varying treatments & ̅ ' [| ̅ =
+ , + = ̅ ] 1 ("% ) (( |+ (*# , ̅ (*# ) ①“過去”を条件付けた アウトカムに対するモデル ②”過去”のjoint distribution に対するモデル(複数) Ø R package: gfoRmula (Lin et al 2019) Ø もしくはICE (iterated conditional expectation) g-computation (e.g., TMLE) 8
̅ + = 1 ("% # 1 (( | ̅
(*# , + ( ) IPW for time-varying treatments ①“過去”を条件付けた各時点の治療に対するモデル E , ! = -. [| ̅ ] ②Marginal Structural Model (過去の治療歴のみを条件づけたweightedアウトカム モデル) Marginal Effectに興味があるとき 9
̅ + = 1 ("% # (( | ̅ (*#
, ) (( | ̅ (*# , + ( ) IPW for time-varying treatments ①“過去”を条件付けた各時点の治療に対するモデル ②Marginal Structural Model (過去の治療歴+Vを条件づけたweightedアウトカム モデル) E , !| = -. [| ̅ , ] ベースライン共変量Vによる効果修飾に興味があるとき ①Vと過去の治療歴を 条件付けた各時点の 治療に対するモデル 10
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 11
g-estimation for time-fixed treatments Ø Conditional effectを推定 Ø Causal “effect”を直接モデル化
(Structural Nested Mean Model) [! − !"%|] = # (Lによる効果修飾なし) [! − !"%|] = # + / ∗ (Lのsubset/L以外のベースライン変数Vによる効果修飾 あり) $POEJUJPOBM&YDIBOHFBCJMJUZ Ya⫫A|L ΛԾఆ 12
g-estimation for time-fixed treatments 1. ! − !"% = #
2. !"% = ! − # = − # (by consistency) 3. H(0) = − 0 6. = 1 , H 0 = % + # H 0 + / L 7. # = 0となる0をgrid searchで⾒つける 4. もし 0 = # なら H(0) = !"% 5. Conditional Exchangeabilityより Ya⫫A|L 13
g-estimation for time-fixed treatments 1. Structural Nested Mean Model [!
− !"%|] = # (Lによる効果修飾なし) 2. Treatment Model = 1 , H 0 = % + # H 0 + / L 14
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 15
g-estimation for time-varying treatments Ø まず⼆時点の場合を考える (p269) Ø Sequential exchangeability
A0 L1 A1 Y A0 |a0 L1 a0 A1 a0|a1 Ya0,a1 Ø Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 16
g-estimation: Step 1 Ø Structural ”Nested” Mean Modelsを設定 1. [!!,!""%
− !!"%,!""%] = % % 2. [!!,!" − !!,!""% # !! = # , % = % = # (## + #/ # + #1 % + #2 % # ) A0 |a0 L1 a0 A1 a0|a1 Ya0,a1 " ͷޮՌͷϞσϧ ͜ͷྫͰ- ͕ͳ͍ʣ " ͷޮՌͷϞσϧ “過去”による効果修飾 Ø . の推定がゴール︕ Ø 各時点の治療のConditional effectを推定 17
① !!"%,!""% = !!,!""% − % % ② !!,!""%= !!,!"
− ## # + #/ # # !! + #1 % # + #2 % # # !! ①+② !!"%,!""%= !!,!" − I J ## # + #/ # # !! + #1 % # + #2 % # # !! − % % g-estimation: Step 2 Ø 個⼈レベルに変換 Ø !!"%,!""% に対する1つの⽅程式をつくる 18
!!"%,!""% = !!,!" − ## # + #/ # #
!! + #1 % # + #2 % # # !! − % % = − ## # + #/ # # + #1 % # + #2 % # # − % % g-estimation: Step 3 Ø ConsistencyでデータとStep2の式をリンク ∗ = − ## ∗ # + #/ ∗ # # + #1 ∗ % # + #2 ∗ % # # − % ∗% Ø (∗)をつくる ະͷύϥϝʔλ 1. ∗͕ܾ·ΕաڈͷA, Lͷσʔλ͔Β (∗)֤ݸਓʹ ରͯ͠ܭࢉՄೳ 2. ∗=ͳΒ(∗) = = !!"%,!""% 19
g-estimation: Step 4 Ø Sequential Exchangeabilityを使う Ø Treatment Modelをつくる Ø
Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 Ø ⫫ A1 | L1 ,A0 Ø ⫫ A0 logit # # , % , ∗ = % + ∗ ( + % + # + # % ) + 8 # ∗ の係数の推定値が0となるような∗(5つの)を⾒つける (Grid Search) logit % ∗ = % + ∗ 20
g-estimation: おまけ Treatment modelを使わないで. を推定可能 !!"%,!""%= − ## # +
#/ # # + #1 % # + #2 % # # − % % E +!,% % , # , # = E % , # , # −#,# # − #,/ # # − #,1 % # − #,2 % # # Ø Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 Ø Structural Nested Mean Model Ø Conditional Exchangeability 平均 21
g-estimation: おまけ Ø Treatment modelを使わない推定 Ø Conditional Exchangeabilityより Ø Ya0,a1
⫫ A1 | L1 ,A0 Ø E "!,$ $ , % , % = 0 = E "!,$ $ , % , % = 1 Ø 84 = 84- %,% , 52 = 52- %,% - %,& Ø %,% =0, %,& = 0 E "!,$ $ , % , % = E $ , % , % −%,% % − %,& % % − %,' $ % − %,( $ % % A0 L1 A1 Y "!,$ $, %, % 0 0 0 84 84 0 0 1 84 84-%,% 0 1 0 52 52 0 1 1 52 52-%,% -%,& Table 21.1 (p257) & Table 21.2 (p270)より Ø 現実にはexposure/covariate historyのパターンが多い→モデル Ø Linear modelの場合はclosed form (Technical Point 21.5) 22
g-estimation for time-varying treatments Ø K時点の場合を考える Ø Sequential exchangeability A0
L1 A1 L2 Ø Yā ⫫ Ak | L̄ k , A ̅ k-1 L0 Lk Ak LK AK Y … … 23
g-estimation: Step 1 Ø Structural ”Nested” Modelsを設定 , !#,%#$" −
, !#%",%# = ( ( + (*# , + ( , ! , "L ͷޮՌͷϞσϧ 1. β (ak の効果は⼀定) 2. β0 + β1 k (ak の効果は時間と共に線形変化) 3. β0 + β1 ak-1 + β2 Lk ā + β3 a0 Lk ā (ak の効果は直前のLk とak-1 のみに依存) ( + (*# , + ( , ! , の例 Bias-variance trade-off!! Ø 各時点の治療のConditional effectを推定 24
g-estimation: Step 2 , !#,%#$" − , !#%",%# = (
( + (*# , + ( , ! , 9 % = , ! − & ("% ) ( ( + (*# , + ( , ! , Ø 9 %に対する1つの⽅程式をつくる Ø 以下は例として( + (*# , + ( , ! , = (a: の効果は⼀定)のとき 9 % = , ! − & ("% ) ( 25
g-estimation: Step 3 Ø ConsistencyでデータとStep2の式をリンク ∗ = − ∗ &
("% ) ( Ø (∗)をつくる ະͷύϥϝʔλ 1. ∗͕ܾ·ΕաڈͷAͷσʔλ͔Β (∗)֤ݸਓʹର ͯ͠ܭࢉՄೳ 2. ∗=ͳΒ(∗) = = 9 % 9 % = , ! − & ("% ) ( = − & ("% ) ( 26
g-estimation: Step 4 Ø Sequential Exchangeabilityを使う Ø Treatment Modelをつくる Ø
Yā ⫫ Ak | L̄ k , A ̅ k-1 すべての時点kにおける治療Ak に対して、 ∗ の係数の推定値 が0となるような∗を⾒つける 1PPMFE-PHJTUJD3FHSFTTJPOͰҰؾʹϞσϧԽ Ø ⫫ Ak | L̄ k , A ̅ k-1 logit ( ( ( , ̅ (*# , ∗ = % ∗ + ( ̅ (*# , ( ( 各時点でのfunctional formが同じと仮定 27
g-estimation: Step 5 Ø [9 %]を推定する Ø [ , !]を推定する
9 % = − & ("% ) ( ( + (*# , + ( , 9 % = − & ("% ) ( Ø 各時点での効果を ) $ に⾜していく Ø 効果が過去の 1 *+% , - に依存するときには、 1 * , -をシミュレート (Technical Point 21.6) , ! = 9 %+ & ("% ) ( ( + (*# , + ( , ! , , ! = 9 % + & ("% ) ( ( + (*# , + ( , ! , = の場合 28
g-estimation まとめ Ø * 1 *+% , 1 * ,
-, にtreatment/covariate historyが含まれる(各時点 の治療効果が過去の変数によって変わる)ときは複数 Ø Pooled logisticを使うためにはconstant functional form 4USVDUVSBM/FTUFE .FBO .PEFMT , !#,%#$" − , !#%",%# = ( ( + (*# , + ( , ! , logit ( ( ( , ̅ (*# , ∗ = % ∗ + ( ̅ (*# , ( ( 5SFBUNFOU)JTUPSZ.PEFM $PWBSJBUF)JTUPSZ.PEFM Ø * 1 *+% , 1 * , -, に過去のLが含まれている時 Ø Pooled logisticを使って 1 * , -をシミュレート 29
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 30
Time-varying Censoring [ , !, ̅ ;"%|+ ] = ̅
= + , + , ̅ = + 0 !,;"% = = [| = , , = 0] Ø Time-fixed Treatment Ø Time-varying Treatment Ø Time-varying treatment & time-varying censoringへのjoint interventionと考えられる Ø Time-varying censoringの対応にもg-methodがつかえる 31