Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-estimation for time-varying treatments(Causal...
Search
Shuntaro Sato
November 25, 2020
Science
0
2.7k
G-estimation for time-varying treatments(Causal inference: What if, Chapter 21-2)
Keywords: 因果推論, Time-varying, G-estimation, Censoring
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
仮説検定とP値
shuntaros
8
9k
Target trial emulationの概要
shuntaros
2
2.5k
Win ratio その2
shuntaros
0
420
Win ratioとは何か?
shuntaros
0
2.3k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
820
「回帰分析から分かること」と「変数選択」
shuntaros
14
17k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.2k
自己対照デザイン:ケースクロスオーバーデザイン・ケースタイムコントロールデザイン
shuntaros
1
2.3k
何が知りたいのか?〜どのぐらい?に答える〜(医学統計学・疫学セミナー)
shuntaros
0
2.3k
Other Decks in Science
See All in Science
Machine Learning for Materials (Lecture 9)
aronwalsh
0
210
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
670
学術講演会中央大学学員会八王子支部
tagtag
0
230
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
730
Презентация программы магистратуры СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
390
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
560
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
340
Celebrate UTIG: Staff and Student Awards 2024
utig
0
460
拡散モデルの原理紹介
brainpadpr
3
4.8k
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
220
作業領域内の障害物を回避可能なバイナリマニピュレータの設計 / Design of binary manipulator avoiding obstacles in workspace
konakalab
0
160
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.5k
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Unsuck your backbone
ammeep
668
57k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
654
59k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
It's Worth the Effort
3n
183
27k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Facilitating Awesome Meetings
lara
50
6.1k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Become a Pro
speakerdeck
PRO
25
5k
How STYLIGHT went responsive
nonsquared
95
5.2k
Transcript
G-estimation for time-varying treatments & Censoring Causal Inference: What if
Chapter 21(後半) 担当︓KRSK (@koro485)
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 2
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 3
Time-varying Treatments ⽬的︓複数時点での介⼊の効果 Ø 例︓[!!"#,!""# − !!"%,!""%] Ø 「全員がすべての時点で治療を受けた(always-treat)vsずっ と受けなかった(never-treat)」
Time-fixed Treatments ⽬的︓1時点での介⼊の効果 Ø 例︓[!"# − !"%] Ø 「全員が(ある⼀時点で)治療を受けたvs受けなかった」 4
仮定︓Sequential exchangeability Ø Yā ⫫ Ak | L̄ k ,
A ̅ k-1 Ø Exchangeability for each treatment conditional on past covariate & treatment A0 L1 L0 A1 Y A0 |a0 L1 a0 L0 A1 a0|a1 Ya0,a1 例︓⼆時点の場合 Ø Ya0,a1 ⫫ A1 | L1 ,L0 ,A0 Ø Ya0,a1 ⫫ A0 | L0 5
なぜtime-varying treatmentsか︖ Ø 最適な治療regimeの効果検証(どのように複数時点での介⼊ を続けていけばよいか︖) Ø 曝露因⼦が時間によってで⼤きく変化する/アドヒアランス が悪いとき、time-fixedの"効果”は過⼩推定の可能性あり Ø例︓「ライザップ的⾷⽣活の効果」 6
g-methods Ø g-formula (a.k.a., g-computation) Ø IPW of marginal structural
model Ø g-estimation of structural nested models • Sequential exchangeabilityのもと、time-varying treatmentsの因果効果を推定可能 • 異なるモデルの仮定 7
g-formula for time-varying treatments & ̅ ' [| ̅ =
+ , + = ̅ ] 1 ("% ) (( |+ (*# , ̅ (*# ) ①“過去”を条件付けた アウトカムに対するモデル ②”過去”のjoint distribution に対するモデル(複数) Ø R package: gfoRmula (Lin et al 2019) Ø もしくはICE (iterated conditional expectation) g-computation (e.g., TMLE) 8
̅ + = 1 ("% # 1 (( | ̅
(*# , + ( ) IPW for time-varying treatments ①“過去”を条件付けた各時点の治療に対するモデル E , ! = -. [| ̅ ] ②Marginal Structural Model (過去の治療歴のみを条件づけたweightedアウトカム モデル) Marginal Effectに興味があるとき 9
̅ + = 1 ("% # (( | ̅ (*#
, ) (( | ̅ (*# , + ( ) IPW for time-varying treatments ①“過去”を条件付けた各時点の治療に対するモデル ②Marginal Structural Model (過去の治療歴+Vを条件づけたweightedアウトカム モデル) E , !| = -. [| ̅ , ] ベースライン共変量Vによる効果修飾に興味があるとき ①Vと過去の治療歴を 条件付けた各時点の 治療に対するモデル 10
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 11
g-estimation for time-fixed treatments Ø Conditional effectを推定 Ø Causal “effect”を直接モデル化
(Structural Nested Mean Model) [! − !"%|] = # (Lによる効果修飾なし) [! − !"%|] = # + / ∗ (Lのsubset/L以外のベースライン変数Vによる効果修飾 あり) $POEJUJPOBM&YDIBOHFBCJMJUZ Ya⫫A|L ΛԾఆ 12
g-estimation for time-fixed treatments 1. ! − !"% = #
2. !"% = ! − # = − # (by consistency) 3. H(0) = − 0 6. = 1 , H 0 = % + # H 0 + / L 7. # = 0となる0をgrid searchで⾒つける 4. もし 0 = # なら H(0) = !"% 5. Conditional Exchangeabilityより Ya⫫A|L 13
g-estimation for time-fixed treatments 1. Structural Nested Mean Model [!
− !"%|] = # (Lによる効果修飾なし) 2. Treatment Model = 1 , H 0 = % + # H 0 + / L 14
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 15
g-estimation for time-varying treatments Ø まず⼆時点の場合を考える (p269) Ø Sequential exchangeability
A0 L1 A1 Y A0 |a0 L1 a0 A1 a0|a1 Ya0,a1 Ø Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 16
g-estimation: Step 1 Ø Structural ”Nested” Mean Modelsを設定 1. [!!,!""%
− !!"%,!""%] = % % 2. [!!,!" − !!,!""% # !! = # , % = % = # (## + #/ # + #1 % + #2 % # ) A0 |a0 L1 a0 A1 a0|a1 Ya0,a1 " ͷޮՌͷϞσϧ ͜ͷྫͰ- ͕ͳ͍ʣ " ͷޮՌͷϞσϧ “過去”による効果修飾 Ø . の推定がゴール︕ Ø 各時点の治療のConditional effectを推定 17
① !!"%,!""% = !!,!""% − % % ② !!,!""%= !!,!"
− ## # + #/ # # !! + #1 % # + #2 % # # !! ①+② !!"%,!""%= !!,!" − I J ## # + #/ # # !! + #1 % # + #2 % # # !! − % % g-estimation: Step 2 Ø 個⼈レベルに変換 Ø !!"%,!""% に対する1つの⽅程式をつくる 18
!!"%,!""% = !!,!" − ## # + #/ # #
!! + #1 % # + #2 % # # !! − % % = − ## # + #/ # # + #1 % # + #2 % # # − % % g-estimation: Step 3 Ø ConsistencyでデータとStep2の式をリンク ∗ = − ## ∗ # + #/ ∗ # # + #1 ∗ % # + #2 ∗ % # # − % ∗% Ø (∗)をつくる ະͷύϥϝʔλ 1. ∗͕ܾ·ΕաڈͷA, Lͷσʔλ͔Β (∗)֤ݸਓʹ ରͯ͠ܭࢉՄೳ 2. ∗=ͳΒ(∗) = = !!"%,!""% 19
g-estimation: Step 4 Ø Sequential Exchangeabilityを使う Ø Treatment Modelをつくる Ø
Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 Ø ⫫ A1 | L1 ,A0 Ø ⫫ A0 logit # # , % , ∗ = % + ∗ ( + % + # + # % ) + 8 # ∗ の係数の推定値が0となるような∗(5つの)を⾒つける (Grid Search) logit % ∗ = % + ∗ 20
g-estimation: おまけ Treatment modelを使わないで. を推定可能 !!"%,!""%= − ## # +
#/ # # + #1 % # + #2 % # # − % % E +!,% % , # , # = E % , # , # −#,# # − #,/ # # − #,1 % # − #,2 % # # Ø Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 Ø Structural Nested Mean Model Ø Conditional Exchangeability 平均 21
g-estimation: おまけ Ø Treatment modelを使わない推定 Ø Conditional Exchangeabilityより Ø Ya0,a1
⫫ A1 | L1 ,A0 Ø E "!,$ $ , % , % = 0 = E "!,$ $ , % , % = 1 Ø 84 = 84- %,% , 52 = 52- %,% - %,& Ø %,% =0, %,& = 0 E "!,$ $ , % , % = E $ , % , % −%,% % − %,& % % − %,' $ % − %,( $ % % A0 L1 A1 Y "!,$ $, %, % 0 0 0 84 84 0 0 1 84 84-%,% 0 1 0 52 52 0 1 1 52 52-%,% -%,& Table 21.1 (p257) & Table 21.2 (p270)より Ø 現実にはexposure/covariate historyのパターンが多い→モデル Ø Linear modelの場合はclosed form (Technical Point 21.5) 22
g-estimation for time-varying treatments Ø K時点の場合を考える Ø Sequential exchangeability A0
L1 A1 L2 Ø Yā ⫫ Ak | L̄ k , A ̅ k-1 L0 Lk Ak LK AK Y … … 23
g-estimation: Step 1 Ø Structural ”Nested” Modelsを設定 , !#,%#$" −
, !#%",%# = ( ( + (*# , + ( , ! , "L ͷޮՌͷϞσϧ 1. β (ak の効果は⼀定) 2. β0 + β1 k (ak の効果は時間と共に線形変化) 3. β0 + β1 ak-1 + β2 Lk ā + β3 a0 Lk ā (ak の効果は直前のLk とak-1 のみに依存) ( + (*# , + ( , ! , の例 Bias-variance trade-off!! Ø 各時点の治療のConditional effectを推定 24
g-estimation: Step 2 , !#,%#$" − , !#%",%# = (
( + (*# , + ( , ! , 9 % = , ! − & ("% ) ( ( + (*# , + ( , ! , Ø 9 %に対する1つの⽅程式をつくる Ø 以下は例として( + (*# , + ( , ! , = (a: の効果は⼀定)のとき 9 % = , ! − & ("% ) ( 25
g-estimation: Step 3 Ø ConsistencyでデータとStep2の式をリンク ∗ = − ∗ &
("% ) ( Ø (∗)をつくる ະͷύϥϝʔλ 1. ∗͕ܾ·ΕաڈͷAͷσʔλ͔Β (∗)֤ݸਓʹର ͯ͠ܭࢉՄೳ 2. ∗=ͳΒ(∗) = = 9 % 9 % = , ! − & ("% ) ( = − & ("% ) ( 26
g-estimation: Step 4 Ø Sequential Exchangeabilityを使う Ø Treatment Modelをつくる Ø
Yā ⫫ Ak | L̄ k , A ̅ k-1 すべての時点kにおける治療Ak に対して、 ∗ の係数の推定値 が0となるような∗を⾒つける 1PPMFE-PHJTUJD3FHSFTTJPOͰҰؾʹϞσϧԽ Ø ⫫ Ak | L̄ k , A ̅ k-1 logit ( ( ( , ̅ (*# , ∗ = % ∗ + ( ̅ (*# , ( ( 各時点でのfunctional formが同じと仮定 27
g-estimation: Step 5 Ø [9 %]を推定する Ø [ , !]を推定する
9 % = − & ("% ) ( ( + (*# , + ( , 9 % = − & ("% ) ( Ø 各時点での効果を ) $ に⾜していく Ø 効果が過去の 1 *+% , - に依存するときには、 1 * , -をシミュレート (Technical Point 21.6) , ! = 9 %+ & ("% ) ( ( + (*# , + ( , ! , , ! = 9 % + & ("% ) ( ( + (*# , + ( , ! , = の場合 28
g-estimation まとめ Ø * 1 *+% , 1 * ,
-, にtreatment/covariate historyが含まれる(各時点 の治療効果が過去の変数によって変わる)ときは複数 Ø Pooled logisticを使うためにはconstant functional form 4USVDUVSBM/FTUFE .FBO .PEFMT , !#,%#$" − , !#%",%# = ( ( + (*# , + ( , ! , logit ( ( ( , ̅ (*# , ∗ = % ∗ + ( ̅ (*# , ( ( 5SFBUNFOU)JTUPSZ.PEFM $PWBSJBUF)JTUPSZ.PEFM Ø * 1 *+% , 1 * , -, に過去のLが含まれている時 Ø Pooled logisticを使って 1 * , -をシミュレート 29
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 30
Time-varying Censoring [ , !, ̅ ;"%|+ ] = ̅
= + , + , ̅ = + 0 !,;"% = = [| = , , = 0] Ø Time-fixed Treatment Ø Time-varying Treatment Ø Time-varying treatment & time-varying censoringへのjoint interventionと考えられる Ø Time-varying censoringの対応にもg-methodがつかえる 31