$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
非正規化おじさんを殴るためのPrinciple of explosion
Search
Sota Sugiura
February 19, 2016
Technology
3
2.8k
非正規化おじさんを殴るためのPrinciple of explosion
正規化って大事だよねって話です。
雑兵Meetup #3にて発表
Sota Sugiura
February 19, 2016
Tweet
Share
More Decks by Sota Sugiura
See All by Sota Sugiura
内製したSlack Appで頑張るIncident Response@Waroom Meetup #1 / Incident Response with Slack App in 10X
sota1235
0
1.8k
20220926_セキュリティチームの今_for_Drs._Prime_公開用.pdf
sota1235
0
160
再発防止策を考える技術 / #phpconsen
sota1235
10
4k
How to choose the best npm module for your team?
sota1235
9
620
Realtime Database for high traffic production application
sota1235
7
4.2k
Road to migrate JP Web as a microservice
sota1235
4
1.7k
インターフェース再入門 / Think Interface again
sota1235
6
11k
再発防止策を考える技術 #phpconfuk_rej
sota1235
1
1.3k
Update around Firebase #io18
sota1235
3
4.4k
Other Decks in Technology
See All in Technology
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
410
Overture Maps Foundationの3年を振り返る
moritoru
0
150
ガバメントクラウド利用システムのライフサイクルについて
techniczna
0
180
eBPFとwaruiBPF
sat
PRO
4
2.5k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
690
Security Diaries of an Open Source IAM
ahus1
0
130
21st ACRi Webinar - Univ of Tokyo Presentation Slide (Shinya Takamaeda)
nao_sumikawa
0
120
“決まらない”NSM設計への処方箋 〜ビットキーにおける現実的な指標デザイン事例〜 / A Prescription for "Stuck" NSM Design: Bitkey’s Practical Case Study
bitkey
PRO
1
580
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
210
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
170
因果AIへの招待
sshimizu2006
0
910
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
180
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
How to Ace a Technical Interview
jacobian
280
24k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Building Adaptive Systems
keathley
44
2.9k
Transcript
/6--͓͡͞ΜΛԥΔͨΊͷ 1SJODJQMFPGFYQMPTJPO !TPUB
ँࡑ
Զʮ/6--શવؔͳ͔ͬͨʜʯ
ඇਖ਼نԽ/6--͓͡͞ΜΛԥΔͨΊͷ 1SJODJQMFPGFYQMPTJPO !TPUB
ࣗݾհ w ˏTPUB w JTUZMF *OD w 1)1+BWB4DSJQU
'PMMPXNF
%#ͷ͓͠·͢ ϚαΧϦίϫΠσε
Έͳ͞Μඇਖ਼نԽ͓͡͞ΜΛ ͝ଘͰ͔͢ʁ
ඇਖ਼نԽ͓͡͞Μͱ w ʮ+0*/͢Δͱ͘ͳΔ͔Βਖ਼نԽΊΕʯ w ʮσʔλ͕ࢄΒΔ͔Βਖ਼نԽΊΕʯ
ࡶฌʮ͙͵͵ʜʯ w ਖ਼͘͠3%#Λཧղͯ͠ͳ͍ͱඇਖ਼نԽ͓͡͞Μ Λ͢ͷ͍͠ w ᐆດͳཧͩͱzܦݧzΛثʹෛ͚ͯ͠· ͏͜ͱ͕ଟ͍
ʮͦ͏ͩɺཧ͠Α͏ʯ
ຊಡΜͩ ཧ͔ΒֶͿσʔλϕʔε࣮ફೖ 8&# %#13&44QMVT Ԟװ ஶ
ਖ਼نԽͷඞཁੑΛ ͱ͋ΔҰ໘͔ΒΓࠐΜͰΈΔ
ͦͦਖ਼نԽͱ
ਖ਼نԽͱ w 3%#ͷઃܭख๏ͱཱͯ֬͠͞Εͨख๏ w ͻͱ͜ͱͰݴ͏ͱʮσʔλϕʔε͔ΒॏෳΛͳ͘ ͢ʯ࡞ۀ
ͱ͋Δςʔϒϧ ໊લ ֶ ͖ͳ৯ ࡶฌଠ όφφ ࡶฌՖࢠ εΠΧ
ࡶฌଠ ࡶฌՖࢠ ΓΜ͝
ͱ͋Δςʔϒϧ ໊લ ֶ ͖ͳ৯ ࡶฌଠ όφφ ࡶฌՖࢠ εΠΧ
ࡶฌଠ ࡶฌՖࢠ ΓΜ͝ ʮ̋̋͞Μ̋ੜʯͱ͍͏ใ͕ ॏෳ͍ͯ͠Δ
ਖ਼نԽ͢Δ ໊લ ֶ ͖ͳ৯ ࡶฌଠ όφφ ࡶฌՖࢠ εΠΧ
ࡶฌଠ ࡶฌՖࢠ ΓΜ͝ ໊લ ͖ͳ৯ ࡶฌଠ όφφ ࡶฌՖࢠ εΠΧ ࡶฌଠ ࡶฌՖࢠ ΓΜ͝ ໊લ ֶ ࡶฌଠ ࡶฌՖࢠ
ਖ਼نԽ͠ͳ͍ͱʜ ໊લ ֶ ͖ͳ৯ ࡶฌଠ όφφ ࡶฌՖࢠ εΠΧ
ࡶฌଠ ࡶฌՖࢠ ΓΜ͝ ࡶฌଠ ύΠφοϓϧ */4&35
ਖ਼نԽ͠ͳ͍ͱʜ ໊લ ֶ ͖ͳ৯ ࡶฌଠ όφφ ࡶฌՖࢠ εΠΧ
ࡶฌଠ ࡶฌՖࢠ ΓΜ͝ ࡶฌଠ ύΠφοϓϧ */4&35 ໃ६ͨ͠σʔλ
͢ͳΘͪ ਖ਼نԽ͠ͳ͍ͱ͍͏͜ͱໃ६ͨ͠σʔλ͕ ૠೖ͞ΕΔཱ֬Λ্͛Δ͜ͱ
ໃ६ͷޭࡑ
3%#ͷૅ w 3%#ϦϨʔγϣφϧϞσϧΛ࣮ͨ͠ͷ w ϦϨʔγϣφϧϞσϧू߹ཧֶΛݩʹ͠ ͨσʔλϞσϦϯά
3%#ͷૅ w 3%#ϦϨʔγϣφϧϞσϧΛ࣮ͨ͠ͷ w ϦϨʔγϣφϧϞσϧू߹ཧֶΛݩʹ͠ ͨσʔλϞσϦϯά w ໃ६ཧֶΛࡴ͢
ࡶฌʮཧֶʜ ꒪⌓꒪ ʁʯ
ඵͰཧղ͢Δཧֶ w ཧֶͱz໋zΛ͜Ͷ͘Γ·Θֶ͢ w ໋ͱਅِΛ࣮֬ʹ͑Δͷ w ʮਿӜஉͰ͋Δʯ w ʮࡊ͓͍͍͠ʯ
ඵͰཧղ͢Δཧֶ w ཧֶʹఆཧ͕ଘࡏ͢Δ w ֶͰݴ͏ʮެࣜʯ w ఆཧΛݩʹ͋ΒΏΔ໋ͷਅِΛಋ͖ग़͢
ཧֶʹ͓͚Δఆཧ w ೋॏ൱ఆͷআڈ • not (not A) = true ->
A = true w ཧੵͷಋೖ • A = true, B = true -> (A and B) = true • ཧͷಋೖ • A = true -> (A or B) = true
ࠓͷओ͜ͷఆཧͷ͏ͪͷͭ
ʊਓਓਓਓਓਓਓਓਓਓਓਓਓʊ ʼɹ1SJODJQMFPGFYQMPTJPOɹʻ ʉ:?:?:?:?:?:?:?:?:?:ʉ
1SJODJQMFPGFYQMPTJPO w ༁͢Δͱʮരൃͷ๏ଇʯ w ཧֶʹ͓͚Δఆཧͷͭ w ໃ६͔Β͋ΒΏΔ໋Λಋ͘ΦιϩγΠఆཧ • (A and
not A) = true -> B = true
1SJODJQMFPGFYQMPTJPO w ༁͢Δͱʮരൃͷ๏ଇʯ w ཧֶʹ͓͚Δఆཧͷͭ w ໃ६͔Β͋ΒΏΔ໋Λಋ͘ΦιϩγΠఆཧ • (A and
not A) = true -> B = true
ཁ͢Δʹʜʁ w ʮਿӜࡶฌͰ͋ΔʯͱʮਿӜࡶฌͰͳ͍ʯ ͕ڞʹਅ࣮Ͱ͋Δͱ͢Δ
ཁ͢Δʹʜʁ w ʮਿӜࡶฌͰ͋ΔʯͱʮਿӜࡶฌͰͳ͍ʯ ͕ڞʹਅ࣮Ͱ͋Δͱ͢Δ w ʮਿӜࡀͰ͋Δʯͱ͍͏ಥഥࢠͳ໋͍ ਅͱ͢Δ͜ͱ͕Մೳ
ূ໌ͯ͠ΈΔ w A and not A͕ਅͱͳΔ"͕ଘࡏ͢ΔͱԾఆ͢Δ
ূ໌ͯ͠ΈΔ w ҙͷ໋Λ#ͱ͢Δ • A or B ਅ • (B
or A) and not A ਅ • ਪنଇʹΑΓBਅ
ূ໌Ͱ͖ͯ͠·ͬͨʜ w A and (not A)͕ਅͰ͋Δ͜ͱͰɺಥഥࢠ ͳ͘ग़໋͖ͯͨ#͕ਅͩͱূ໌Ͱ͖ͯ͠·ͬͨ
ࡶฌ 1SJODJQMFPGFYQMPTJPOΛ֮͑ͨʂ
ໃ६JT&WJM w ϦϨʔγϣφϧϞσϧͷϕʔεཧֶ w ཧֶΛഁյ͢Δໃ६͕ଘࡏ͢ΔͱϦϨʔγϣ φϧϞσϧ·่ͨյ͢Δ w ʮਖ਼͍͠σʔλʯΛฦ͞ͳ͍3%#ʹՁ͋Δ ͷ͔
ໃ६Λආ͚Δʹʁ w σʔλʹໃ६ΛؚΊͳ͍ॏෳΛۃྗආ͚Δ w ॏෳΛආ͚ΔͨΊʹਖ਼نԽΛ͏
ඇਖ਼نԽ͓͡͞ΜʹऻΘΕͨΒ w ਖ਼نԽͷతΛ͑Α͏ w ਖ਼نԽໃ६ΛؚΉՄೳੑΛԼ͛ΔͨΊͷͷ w ໃ६3%#ͷੈքΛյ͠͏Δ w ࠔͬͨΒໃ६ͷΛ͠Α͏ w
ʮ1SJODJQMFPGFYQMPTJPOͱ͍͏ͷ͕͋ͬͯͰ͢Ͷʜʯ
ͱ͍͑ w ݱ࣮ੈքΛશͯཧֶͷੈքʹϚοϐϯά͢Δ͜ͱ ෆՄೳ w ݱ࣮ͷσʔλϕʔεϋʔυΣΞ͓ͩۚ͠༗ݶ
΄ͲΑ͘ਖ਼نԽ͠Α͏ w ਖ਼نԽʹϨϕϧ͕͋Δ d/' #/' d/' w 3%#Λ͖ͪΜͱཧղͯ͠܅͚ͩͷ࠷ڧͷσʔλ ϕʔεΛઃܭ͠Α͏ʂ
͝੩ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠