Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150205 発表資料
Search
Yuta
February 05, 2015
Education
0
160
20150205 発表資料
Yuta
February 05, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
180
NLP2016 報告
sudo
0
200
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
270
20150909 発表資料
sudo
0
150
20150820 文献紹介
sudo
0
190
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
200
20150512 文献紹介
sudo
0
190
Other Decks in Education
See All in Education
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
Linguaxes de programación
irocho
0
530
Introduction - Lecture 1 - Next Generation User Interfaces (4018166FNR)
signer
PRO
2
4.4k
AWS re_Invent に全力で参加したくて筋トレを頑張っている話
amarelo_n24
2
120
IKIGAI World Fes:program
tsutsumi
1
2.6k
心理学を学び活用することで偉大なスクラムマスターを目指す − 大学とコミュニティを組み合わせた学びの循環 / Becoming a great Scrum Master by learning and using psychology
psj59129
1
1.7k
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
1216
cbtlibrary
0
140
都市の形成要因と 「都市の余白」のあり方
sakamon
0
160
滑空スポーツ講習会2025(実技講習)EMFT講習 実施要領/JSA EMFT 2025 procedure
jsaseminar
0
110
The World That Saved Me: A Story of Community and Gratitude
_hashimo2
3
510
Featured
See All Featured
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
BBQ
matthewcrist
89
10k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
The SEO Collaboration Effect
kristinabergwall1
0
350
Believing is Seeing
oripsolob
1
56
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
What does AI have to do with Human Rights?
axbom
PRO
0
2k
Done Done
chrislema
186
16k
Transcript
質問応答 自然言語処理研究室 B3 須戸悠太 1
質問応答とは • 質問に対して、知識を用いて解答を提示する。 • 例:「日本で一番高い山は?」 ▫ →「富士山」と返す。 2
出力結果の違い • 情報検索 ▫ 解答が含まれると考えられるテキスト • 質問応答 ▫ 解答そのもの 3
システム • 「質問の解析」 • 「テキスト検索」 • 「解答の抽出」 の3つのモジュールより構成される。 4
質問の解析 • 質問を解析し、以下の情報を抽出する。 ▫ ①. テキストの検索に必要なキーワード集合 (検索要求) ▫ ②. 期待されている解答の情報
例:「日本で一番高い山は?」 →①:「日本」「一番」「高い」「山」 →②:「山の名前」 5
テキスト検索 • テキスト検索システムを用いる。 • 「質問の解析」で抽出したキーワードを利用し て、大規模なテキスト集合から解答を含んでい ると考えられるテキストを検索する。 6
検索結果 7
解答の抽出 • 検索されたテキストに対して固有名抽出を行う。 ▫ →テキスト中に出現する固有名を同定 • 解答として期待されている固有名のタイプと合 致する、解答として適当な文字列を出力。 8
システム構造 9 テキスト検索 質問の解析 解答の抽出 テキスト集合 質問 解答 検索要求 解答のタイプ
該当テキスト
システム構造 • 質問応答のシステムはテキスト検索と情報抽出 (特に固有名抽出)を組み合わせて実現された 技術である。 10
欠点 • 解答が固有名である質問を想定 ▫ →解答が文章となるような質問への対応が課題 ▫ 例 ▫ 「iPS細胞とは何か?」 ▫
「なぜ雲はできるのか?」 11
Watson • IBMが開発した質問応答システム • アメリカのクイズ番組「Jeopardy!(ジョパ ディ!)」で解答者として挑戦し、人間の解答者 に勝利した。 12
何が凄い? • 「Jeopardy!」の問題文は質問ではなく、事実の 形で書かれており、その文章が何を意味してい るのか回答する形式である。 13
問題文の例 • 「米国が外交関係を持たない世界の4カ国のうち、 この国は最も北にある」 • 質問:「この国」 • 解答:「北朝鮮」 • 問題文の理解(何を聞いているのか)が必要と
なる。 14
勝つための課題 • 幅広い知識が問われる • 正解率 ▫ 不正解の場合、減点されるため。 • 戦略 ▫
掛金が倍になる問題が存在し、自分の得点に応じ て攻めるかの判断が必要。 15
参考資料 • 自然言語処理の基礎 ▫ 奥村学, コロナ社 • 【森山和道の「ヒトと機械の境界面」】 クイズ王を破ったIBMの質問応答システム 「Watson」とは
▫ http://pc.watch.impress.co.jp/docs/column/kyok ai/20110323_434297.html 16