Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150205 発表資料
Search
Yuta
February 05, 2015
Education
0
150
20150205 発表資料
Yuta
February 05, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
170
NLP2016 報告
sudo
0
190
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
260
20150909 発表資料
sudo
0
140
20150820 文献紹介
sudo
0
190
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
190
20150512 文献紹介
sudo
0
180
Other Decks in Education
See All in Education
Web Application Frameworks - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Sanapilvet opetuksessa
matleenalaakso
0
34k
Web Architectures - Lecture 2 - Web Technologies (1019888BNR)
signer
PRO
0
3.3k
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
740
焦りと不安を、技術力に変える方法 - 新卒iOSエンジニアの失敗談と成長のフレームワーク
hypebeans
1
600
AIは若者の成長機会を奪うのか?
frievea
0
130
Réaliser un diagnostic externe
martine
0
830
2025年度伊藤正彦ゼミ紹介
imash
0
140
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
卒論の書き方 / Happy Writing
kaityo256
PRO
50
27k
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
Software
irocho
0
650
Featured
See All Featured
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
How to Ace a Technical Interview
jacobian
281
24k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Being A Developer After 40
akosma
91
590k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Rails Girls Zürich Keynote
gr2m
95
14k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
How STYLIGHT went responsive
nonsquared
100
6k
A Tale of Four Properties
chriscoyier
162
23k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Transcript
質問応答 自然言語処理研究室 B3 須戸悠太 1
質問応答とは • 質問に対して、知識を用いて解答を提示する。 • 例:「日本で一番高い山は?」 ▫ →「富士山」と返す。 2
出力結果の違い • 情報検索 ▫ 解答が含まれると考えられるテキスト • 質問応答 ▫ 解答そのもの 3
システム • 「質問の解析」 • 「テキスト検索」 • 「解答の抽出」 の3つのモジュールより構成される。 4
質問の解析 • 質問を解析し、以下の情報を抽出する。 ▫ ①. テキストの検索に必要なキーワード集合 (検索要求) ▫ ②. 期待されている解答の情報
例:「日本で一番高い山は?」 →①:「日本」「一番」「高い」「山」 →②:「山の名前」 5
テキスト検索 • テキスト検索システムを用いる。 • 「質問の解析」で抽出したキーワードを利用し て、大規模なテキスト集合から解答を含んでい ると考えられるテキストを検索する。 6
検索結果 7
解答の抽出 • 検索されたテキストに対して固有名抽出を行う。 ▫ →テキスト中に出現する固有名を同定 • 解答として期待されている固有名のタイプと合 致する、解答として適当な文字列を出力。 8
システム構造 9 テキスト検索 質問の解析 解答の抽出 テキスト集合 質問 解答 検索要求 解答のタイプ
該当テキスト
システム構造 • 質問応答のシステムはテキスト検索と情報抽出 (特に固有名抽出)を組み合わせて実現された 技術である。 10
欠点 • 解答が固有名である質問を想定 ▫ →解答が文章となるような質問への対応が課題 ▫ 例 ▫ 「iPS細胞とは何か?」 ▫
「なぜ雲はできるのか?」 11
Watson • IBMが開発した質問応答システム • アメリカのクイズ番組「Jeopardy!(ジョパ ディ!)」で解答者として挑戦し、人間の解答者 に勝利した。 12
何が凄い? • 「Jeopardy!」の問題文は質問ではなく、事実の 形で書かれており、その文章が何を意味してい るのか回答する形式である。 13
問題文の例 • 「米国が外交関係を持たない世界の4カ国のうち、 この国は最も北にある」 • 質問:「この国」 • 解答:「北朝鮮」 • 問題文の理解(何を聞いているのか)が必要と
なる。 14
勝つための課題 • 幅広い知識が問われる • 正解率 ▫ 不正解の場合、減点されるため。 • 戦略 ▫
掛金が倍になる問題が存在し、自分の得点に応じ て攻めるかの判断が必要。 15
参考資料 • 自然言語処理の基礎 ▫ 奥村学, コロナ社 • 【森山和道の「ヒトと機械の境界面」】 クイズ王を破ったIBMの質問応答システム 「Watson」とは
▫ http://pc.watch.impress.co.jp/docs/column/kyok ai/20110323_434297.html 16