Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150820 文献紹介
Search
Yuta
August 19, 2015
Education
0
190
20150820 文献紹介
Yuta
August 19, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
170
NLP2016 報告
sudo
0
190
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
260
20150909 発表資料
sudo
0
140
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
190
20150512 文献紹介
sudo
0
180
20150415 文献紹介
sudo
1
230
Other Decks in Education
See All in Education
Ch1_-_Partie_1.pdf
bernhardsvt
0
410
GOVERNOR ADDRESS:2025年9月29日合同公式訪問例会:2720 Japan O.K. ロータリーEクラブ、2025年10月6日卓話:藤田 千克由 氏(国際ロータリー第2720地区 2025-2026年度 ガバナー・大分中央ロータリークラブ・大分トキハタクシー(株)顧問)
2720japanoke
0
620
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
710
今までのやり方でやってみよう!?~今までのやり方でやってみよう!?~
kanamitsu
0
180
高校におけるプログラミング教育を考える
naokikato
PRO
0
160
Презентация "Знаю Россию"
spilsart
0
270
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
350
GitHubとAzureを使って開発者になろう
ymd65536
1
180
Présentation_2nde_2025.pdf
bernhardsvt
0
260
2025年度春学期 統計学 第14回 分布についての仮説を検証する ー 仮説検定(1) (2025. 7. 10)
akiraasano
PRO
0
160
the difficulty into words
ukky86
0
140
2026 g0v 零時政府年會啟動提案 / g0v Summit 2026 Kickstart
rschiang
0
370
Featured
See All Featured
KATA
mclloyd
32
15k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Rails Girls Zürich Keynote
gr2m
95
14k
The Cult of Friendly URLs
andyhume
79
6.6k
Mobile First: as difficult as doing things right
swwweet
224
10k
How STYLIGHT went responsive
nonsquared
100
5.8k
How GitHub (no longer) Works
holman
315
140k
Visualization
eitanlees
149
16k
Six Lessons from altMBA
skipperchong
29
4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
20
1.2k
Transcript
文献紹介 「やさしい日本語」作成支援のための 日本語の難易度自動推定の検討 張 萌, 伊藤 彰則, 佐藤 和之 研究報告音声言語情報処理(SLP)
2012-SLP-91 6 PP.1-6 自然言語処理研究室 B4 須戸悠太 1
概要 • 外国人の感覚に合った日本語の難易度自動 推定について検討 • leave-one-out クロスバリデーションで評価し た結果、外国人の主観評価値と自動推定値 の相関は約0.66となった。 2
やさしい日本語 • 日本語能力検定試験3級を合格した人が理 解可能なレベルを想定 – 3級、4級程度の語彙を使うことが望ましい • あいまいな表現を避け、可能な限り直接的に 表現する 3
普通の日本語 直ちに高台に避難してください。 やさしい日本語 すぐに高いところに逃げてください。
日本語の難易度のモデル化 • = 1 ⋮ 1 1 1 ⋮ 1
⋯ ⋱ ⋯ 1 ⋮ • = 1 ⋯ • リッジ回帰によるモデルパラメー タの推定は以下のようになる • = + −1 4 :日本語文の特徴ベクトル ():難易度スコア :モデルパラメータ :単位行列 (> 0):リッジパラメータ
日本語の難易度に関連する特徴量 • 作成基準 – 文の構造を簡単にする – 難しい日本語を使わない – 外来語を使わない •
文の構造 – 文の長さ、各品詞の数・割合、文節数、係り受け の距離・回数について検討 5
日本語の難易度に関連する特徴量 • 単語レベル – (旧)日本語能力検定試験の語彙レベルを利用 • 外来語 – 全ての文字シンボルがカタカナの形態素を、外来 語とみなす
• 文字シンボル – ひらがな、カタカナ、漢字のそれぞれの割合 6
評価実験 • データ – 東日本大震災において外国人のために書かれた 文章400文を抽出 – 中国人留学生30人に以下の基準で難易度の評 価を行ってもらった 7
評価基準 評価値 完全に分かる 2 ちょっと理解できる 1 全然分からない 0
各特徴量の有効性 8
自動推定の評価 • 実験データ400文のうち、399文を学習データ としてモデルパラメータを求めるのに利用 • 残り1文を評価データとする • リッジパラメータを変化させ、 leave-one-out クロスバリデーション実験を行った
9
自動推定の評価 10 • の調整により、相関が上がる
自動推定の評価 • 推定値と主観評価値の散布図( = 0.2) 11
自動推定の評価 • 2乗誤差最小基準よりリッジ回帰による推定 が有効であることが分かった • 日本語の難易度に関連すると考えられる基 準を組み合わせることで、ある程度自動で推 測可能であることが分かった 12