Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Keynote Speaker - Todd Humphreys: Low-Cost Cent...

Keynote Speaker - Todd Humphreys: Low-Cost Centimer-Accurate Mobile Positioning

Todd Humphreys

More Decks by Texas Natural Resources Information System

Other Decks in Technology

Transcript

  1. Low-Cost Centimeter-Accurate Mobile Positioning Todd Humphreys, Ken Pesyna, Daniel Shepard

    Department of Aerospace Engineering and Engineering Mechanics; Radiosense LLC University of Texas at Austin Texas  GIS  Forum  |  Oct.  29,  2015
  2. “… In that Empire, the Art of Cartography attained such

    Perfection that the map of a single Province occupied the entirety of a City, and the map of the Empire, the entirety of a Province. In time, those Unconscionable Maps no longer satisfied, and the Cartographer’s Guilds struck a Map of the Empire whose size was that of the Empire, and which coincided point for point with it.” —Suarez Miranda,Viajes de varones prudentes, Libro IV,Cap. XLV, Lerida, 1658 On Exactitude in Science Jorge Luis Borges, Collected Fictions, translated by Andrew Hurley
  3. A  1-­‐to-­‐1  Map  of  the  World   What  would  it

     take  to  create  a   global  3D  map  with  geo-­‐referenced     sub-­‐decimeter-­‐accurate  coordinates?  
  4. Improvements to SPS GPS Accuracy have Stalled 50   0.8

      0.5   2   1   0   2   4   6   2000   2001   2002   2003   2004   2005   2006   2007   2008   2009   2010   2011   2012    Range  Error,  meters   Year   Orbit/Clock   Thermal   MulGpath   Atmospheric   •  Prior  to  2000     –  IntenGonal  degradaGon   –  50+  meter  errors   •  May  2,  2000   –  DegradaGon  turned  off   •  Since  2000   –  Steady  Improvements   –  Leveling  off   –  Meter-­‐level  precision   Source: NOAA National Geodetic Survey Meters Error Average SPS GPS Positioning Error
  5. Mass-Market Demands: Short TTF and Low Cost Two  criGcal  performance

     metrics  for  mainstream  cm-­‐accurate   GNSS  will  be  !me  to  fix  and  cost.    Keeping  these  tolerably  low   will  require  network  RTK  or  PPP-­‐RTK  with  a  dense  network:   1.  As  compared  to  tradiGonal  PPP  (sparse  reference  network),   network  RTK  and  PPP-­‐RTK  have  faster  convergence  Gmes   2.  For  both  dual-­‐  and  single-­‐frequency  rover  receivers,  a   Gghter  network  significantly  improves  TTF  down  to  an  inter-­‐ staGon  distance  of  about  15  km   3.  When  targeGng  the  mass  market,  it  makes  economic  sense   to  densify  network:    increased  density  speeds  TTF  and   lowers  receiver  costs  for  millions  of  users      
  6. Mass-Market Demands: Short TTF and Low Cost •  Is  carrier-­‐phase-­‐based

     GNSS  posiGoning  feasible   on  consumer-­‐grade  mobile  pla`orms  such  as   smartphones  and  tablets?   •  What  are  the  primary  challenges?   •  How  can  these  be  addressed?  
  7. Standard Deviation: 3.4 mm Standard Deviation: 11.4 mm Phase Residuals

    Survey-Grade Antenna 8.6 mm Phase Residuals Smartphone Antenna Primary Challenge: Large Time-Correlated Multipath Errors
  8. •  ExisGng  techniques  include:   –  MulGpath-­‐EsGmaGng  Delay-­‐Lock  Loop  [NeeSie&94],

     [TowFen&95]   –  Coupled  mulGpath-­‐esGmaGng  delay-­‐lock,  phase-­‐lock  loop  [PsiErt15]   –  Signal-­‐to-­‐noise-­‐raGo-­‐based  mulGpath  error  correcGon  [AxeCom&96]   –  Enhanced  Strobe  Correlator  [GarRou97]   –  Ray  tracing  [LauCro07]   •  Downsides  are  that  these  exisGng  techniques  require  either:   –  a-­‐priori  knowledge  of  antenna  moGon  profile  [PsiErt15]  or  range  to  nearby  reflecGon  surfaces   [LauCro07]   –  Extra  computaGonal  power  to  generate  measurements  at  more  than  3  correlaGon  taps   [NeeSie&94],  [TowFen&95]   –  A  lengthy  measurement  duraGon  to  idenGfy  mulGpath  frequency  [AxeCom&96]   –  A  high  sampling  rate  in  excess  of  20  megasamples  per  second  [GarRou97]   Existing Multipath Mitigation Techniques Inapt
  9. Expensive  to  reduce  the  magnitude  of  mulGpath  errors,  so  instead,

      we’ll  reduce  the  correlaGon  Gme  of  mulGpath  via  antenna  moGon   and  appropriate  modeling:                 Phase Residuals (No Motion) Phase Residuals (Motion)
  10. EsGmator   Single  ReflecGon   MulGpath  Model   , ,

    (quality) (dynamics) (error statistics) 1.  Position Estimate 2.  Integer Ambiguity Estimates Phase Measurements Modeling Antenna Dynamics and Phase Errors
  11. How Much Does Motion Help? (real data) Even faster TTF

    if motion profile can be constrained
  12. Over  the  past  15  years,  the   computer  vision  community

     has   made  stunning  advances  in  what   is  variously  known  as  structure   from  moGon  (SFM),   photogrammetry,  Vision-­‐based   Simultaneous  LocalizaGon  and   mapping  (VSLAM)  [HarZis00],   [TriMcL&00],  [StraMon&12],   [NueWei&11],  [KleMur07]       OpenMVG, 2015 Agarwal, Snavely, 2009 Colosseum
  13. Extending the SFM technique, we can optimally fuse camera images

    and GNSS phase measurements to shorten TTF and create geo-referenced 3D maps
  14. Jointly  fuse  GNSS  carrier  phase  and  vision  measurement  in  the

     same  non-­‐ linear  esGmator:     OpGmal  ML  soluGon   Phase  Measurements   Camera  OrientaGons   Camera  PosiGons   Vision  Measurements   Point  Feature  PosiGons   CDGNSS  Integer  AmbiguiGes   2 2 Our technique preserves both the sparsity of bundle adjustment and the integerness of the carrier phase ambiguities Resulting 3D point cloud is georeferenced (e.g., to ITRF)