des surfaces continentales en contexte de changement climatique et anthropique avec un usage important de la télédétection spatiale • Contribution à la conception de missions spatiales
Area Index Modèle de transfert radiatif (e.g. BV-net de l'INRA Avignon) Cartes des sols Ré-analyses Météo Spot, Landsat, Sentinel 2 Yiel d Réserve Utile Forçage, calibration m2 feuille/m2 sol Bilan C des parcelles de blé en 2011 (gC.m-2) Sentinel 1, Terrasar X Biomasse, HR% du sol Paramètres Sol + culture Validation par stations de mesure des flux (ET, humidité du sol…) SAMIR Eau SAFY Rendement SAFYE SAFYE- CO2 CO2 Modèle spatialisé Initialisation, assimilation NDVI indice foliaire Exemple de sortie Modélisation spatialisée Validation par statistiques régionales (rendement, irrigation)
; données disponibles depuis Janvier 2010 (phase de recette en vol) • PI : Yann Kerr (CESBIO) • Mesure l’humidité du sol (Soil Moisture SM), l’épaisseur optique de végétation (Vegetation Optical Depth VOD), et la salinité des océans (Ocean Salinity OS) • Spécifications : - Radiomètre en bande L (f = 1.4 GHz, λ = 21 cm) - Résolution spatiale : ~43 km, reprojection à ~25 km - Résolution temporelle : couverture globale en 3/4 jours • Heures d’observation : 6h à l’équateur au nadir pour les orbites ascendantes (ASC), 18h pour les orbites descendantes (DES) • Le satellite est toujours en bonne santé, extension de mission prévue jusqu’en 2025
de Brillance (TB) en polarisation X/Y • Niveau 2 : ESA, grille 15 km SM, VOD, OS par demi orbites • Niveau 3 : CATDS, grille 25 km www.catds.fr/Products/Available-products-from-CPDC SM, VOD, OS TB en polarisation H/V TB en projection polaire • Niveau 4 : Applications. Combinaison des données SMOS avec des modèles, d’autres données satellites, etc. SM désagrégé @ 1 km avec température de surface MODIS. Humidité du sol en zone racinaire (RZSM) Indice de sécheresse (DI) Surface en eau (G-SWAF) Epaisseur de neige Estimation des pluies SM, VOD avec algo simplifié (SMOS-INRAe-CESBIO)
NNSM : produit « neural network soil moisture » Réseau de neurones pour retrouver le SM directement à partir des températures de brillance (TB) SMOS. SM de référence : ECMWF. Validation avec mesures in situ : qualité NNSM comparable avec SM classique. Rodríguez-Fernández et al., 2015; Rodríguez-Fernández et al., 2016; Rodríguez-Fernández et al., 2019.
and water, IPCC 2008) => intérêt de SMOS Applications de SMOS Permet d’observer divers éléments du cycle de l’eau : - humidité du sol - contenu en eau de la végétation - pluies - zones inondées - océans
satellites de SM (SMOS/SMAP/ASCAT) et les SM simulés => amélioration des produits de précipitations PrISM Precipitation Inferred from Soil Moisture Pellarin et al. 2008, 2009, 2013, 2020; Louvet et al. 2015; Brocca et al. 2016; Román-Cascón et al. 2017 ; Zhang et al. 2019 Amélioration des produits de précipitations T. Pellarin (IGE)
SWAF HR @ 1km (Amazonie) Parrens et al., JAG 2019 G-SWAF - Global SMOS WAter Fraction A. Al Bitar (CESBIO) G-SWAF : fraction d’eau estimée à partir des TB SMOS.
Modeling Hurricane tracking (Reul et al.) La Niña detection (Boutin et al.) Upwelling detection (Alory et al.) Gulf Stream monitoring (Reul et al.) Salinité des océans (OS) J. Boutin (LOCEAN), N. Reul (Ifremer)
des dates de gel/dégel (freezing and thawing F/T) • Application pour l’estimation des budgets de méthane sur les hautes latitudes lors des périodes de gel/dégel. Parameter Description Temporal coverage July 2010 - present Temporal resolution: Daily Spatial coverage: 0° - 85° N; 180°W - 180°E Spatial sampling 25 km x 25 km Projection Polar-stereographic Grid EASE-2 Data dimension 720 x 720 (columns x rows) Comparison between SMOS L3 F/T product and in situ observations Cryosphère : suivi du gel/dégel et du flux de méthane K. Rautiainen (FMI)
sur le Groenland. • Résultats similaires à ceux du NSIDC. • Epaisseur de la glace de mer diminue depuis 10 ans. • Automne 2020 : croissance très lente de la glace, anomalie négative record. https://spaces.awi.de/display/CS2SMOS https://smos-diss.eo.esa.int/ Cryosphère : épaisseur de la glace de mer L. Kaleschke (univ. Hambourg)
de la fonte de la glace estimée en Antarctique. Leduc-Leballeur et al., Melt in Antartica derived from SMOS observations at L band, The Cryosphere, 2020. • Produit disponible au CATDS : https://www.catds.fr/Products/Available-products-from-CEC-SM/CryoSMOS-project
couche de végétation • Forte corrélation entre VOD et quantité de biomasse (Above Ground Biomass AGB) • Intérêt de SMOS : haute revisite temporelle => cartes de biomasse dynamiques ? • Attention : VOD aussi sensible à la quantité d’eau dans la végétation (Vegetation Water Content VWC), qui fluctue selon les saisons et les sècheresses Vegetation Optical Depth (VOD) E. Bousquet, A. Mialon, N. Rodriguez-Fernandez (CESBIO) AGB
Bousquet, A. Mialon, N. Rodriguez-Fernandez (CESBIO) • Indices classiques (optiques/IR) de végétation : EVI, NDVI, LAI (MODIS, Proba-V) • VOD en bandes C et X : C-VOD et X-VOD (AMSR) • VOD en bande L : L-VOD (SMOS) La fréquence impacte la profondeur de pénétration => optique : sature beaucoup plus vite car ne reflète que la surface de la végétation (canopée) => bande L : reflète la quasi-totalité de la couche de végétation => L-VOD = indice le mieux corrélé à l’AGB Frappart et al., 2020; Wigneron et al., 2020; Qin et al., 2021
autres variables climatiques ou de végétation. = Corrélation (Pearson) de 2 séries temporelles mensuelles décalées de -6/+6 mois. Δt : décalage temporel qui optimise la corrélation entre les variables. Rmin = 0.5. Bousquet et al., IGARSS 2020 E. Bousquet, A. Mialon, N. Rodriguez-Fernandez (CESBIO)
autres variables climatiques ou de végétation. = Corrélation (Pearson) de 2 séries temporelles mensuelles décalées de -6/+6 mois. Δt : décalage temporel qui optimise la corrélation entre les variables. Rmin = 0.5. Bousquet et al., IGARSS 2020 E. Bousquet, A. Mialon, N. Rodriguez-Fernandez (CESBIO)
autres variables climatiques ou de végétation. = Corrélation (Pearson) de 2 séries temporelles mensuelles décalées de -6/+6 mois. Δt : décalage temporel qui optimise la corrélation entre les variables. Rmin = 0.5. Bousquet et al., IGARSS 2020 E. Bousquet, A. Mialon, N. Rodriguez-Fernandez (CESBIO)
autres variables climatiques ou de végétation. = Corrélation (Pearson) de 2 séries temporelles mensuelles décalées de -6/+6 mois. Δt : décalage temporel qui optimise la corrélation entre les variables. Rmin = 0.5. Bousquet et al., IGARSS 2020 E. Bousquet, A. Mialon, N. Rodriguez-Fernandez (CESBIO)
autres variables climatiques ou de végétation. = Corrélation (Pearson) de 2 séries temporelles mensuelles décalées de -6/+6 mois. Δt : décalage temporel qui optimise la corrélation entre les variables. Rmin = 0.5. => décalage temporel L-VOD – SM élevé sur zones humides car l’eau n’est pas le paramètre limitant Bousquet et al., IGARSS 2020 E. Bousquet, A. Mialon, N. Rodriguez-Fernandez (CESBIO)
denses, le L-VOD est nettement impacté par les feux et récupère beaucoup plus lentement que les indices classiques de végétation (EVI, NDVI, LAI, etc.) • généralisation à l’échelle des forêts tropicales : Bousquet et al., Biogeosciences Discussions, 2021 E. Bousquet, A. Mialon, N. Rodriguez-Fernandez (CESBIO)
SM, VOD et OS qui montrent de très bons résultats • Nombreuses applications terres émergées & océans • Beaucoup de publis dont certaines dans des journaux majeurs • Futur : SMOS HR • VOD : permet d’améliorer les connaissance sur le cycle de la végétation • Biomasse : - équipe SMOS impliquée dans le CCI Biomass (ESA) - thèse synergies SMOS/Biomass en cours (C. Salazar) - Cycle du carbone : SMOS Veg et Land Carbon Constellation (ESA) • Perspectives : - Distinguer les contributions AGB/VWC dans le L-VOD - TropiRAD : Tour en Guyane équipée d’un radiomètre en bande L et de sondes d’humidité du sol depuis Juillet 2021 => validation in situ