$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を⽤いた⽇経電⼦版Proのユーザ分析 / Data Analysis in Nikke...
Search
Shotaro Ishihara
January 22, 2019
Business
8
11k
機械学習を⽤いた⽇経電⼦版Proのユーザ分析 / Data Analysis in Nikkei using Machine Learning
Data Driven Developer Meetup #4 (#d3m) での発表資料
https://d3m.connpass.com/event/115217/
Shotaro Ishihara
January 22, 2019
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
370
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
65
JOAI2025講評 / joai2025-review
upura
0
1.1k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
190
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
70
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
310
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
94
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
110
Other Decks in Business
See All in Business
株式会社Domuz会社紹介資料(採用)
kimpachi_d
0
47k
新規投資家向け資料20251114
junkiogawa
0
2.8k
組織でAIをQAに活用する仕組みづくり / Scaling AI-Powered QA Across Your Organization
medley
0
560
実体験:エンジニアの妊娠・出産と仕事/real-life-experience-pregnancy-childbirth-and-work-for-engineers
emiki
9
1.8k
【pmconf2025】大企業でPdMとして貢献するために、5社で学んだ組織適応と価値創造の手法
wekkyyyy
1
2.7k
知識の非対称性を越える_PdMがエキスパートと築く_信頼と対話の_意思決定の技術__.pdf
hirotoshisakata1
0
2.2k
Fintech landscape updated - Japan section
hakusansai
0
1.2k
WHITE CROSS_New Value_2025011
yutanagahata
0
3.5k
センス・トラスト福利厚生
sensetrust
0
1.8k
pmconf2025_-_現役教師のたこ焼き屋さん___現役PMの駄菓子屋さんが未来に挑む___ユーザーコミュニティ主導のプロダクトマネジメント_.pdf
mindman
0
2.7k
Srush Corporate Brand Book
tomomifuruya
1
9.4k
OH MY GOD inc. 会社概要
fujiyamayuta
0
24k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Fireside Chat
paigeccino
41
3.7k
RailsConf 2023
tenderlove
30
1.3k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Product Roadmaps are Hard
iamctodd
PRO
55
12k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Building Adaptive Systems
keathley
44
2.9k
[SF Ruby Conf 2025] Rails X
palkan
0
530
Faster Mobile Websites
deanohume
310
31k
How GitHub (no longer) Works
holman
316
140k
Transcript
ػցֶशΛ༻͍ͨ ܦిࢠ൛1SPͷϢʔβੳ ຊܦࡁ৽ฉࣾ ੴݪↅଠ %BUB%SJWFO%FWFMPQFS.FFUVQ +BOOE
ٕज़ॻయͰࣥචɾެ։ ٕज़ॻయ̑Ͱ൦ͨ͠ܦిࢠ൛ͷٕज़ॻΛ࠶ൢ͠·͢ɻ IUUQTOPUFNVOJLLFJ@TUBGGOODCBC • ୲ͨ͠ୈষʮػցֶशΛ༻͍ͨܦిࢠ൛1SP ͷϢʔβੳʯશͯແঈެ։த
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
ࣗݾհ • ੴݪↅଠ !VQVSB • ຊܦࡁ৽ฉࣾ ݄ೖࣾ • σʔλΞφϦετˍΤϯδχΞ •
େֶ࣌ɿֶֶ෦ɺ՝֎׆ಈେֶ৽ฉ • झຯɿ,BHHMFɺڝϓϩɺϒϩά ʢ݄BEWFOUDBMFOEBSͳͲͰຊࣥචʣ
σʔλυϦϒϯνʔϜ • αʔϏεاըɾ։ൃӦۀɾϚʔέςΟϯάͰ ʮσʔλΛۙʹʯ • ୯ͳΔੳ͚ͩͰͳ͘ɺج൫ͷඋɺଌఆ߲ͷ ઃܭɺۀޮԽʹ͚ͨڥඋͳͲ • ར༻ݴޠɿ42- 1ZUIPO
3 /PEFKT ຊޠ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
σʔλಓ • σʔλυϦϒϯΛՃ͢Δڭҭ੍ʢʙʣ • ੳ୲ऀ͚ͩͰͳ͘ฤूɾӦۀɾࠂͷؔऀΒ ͕ɺ42-σʔλʹجͮ͘1%$"ͷճ͠ํΛֶͿ • Χ݄ʹΘͨΓिʹҰɺۀ࣌ؒͷ࣌ؒ ͷͰूதతʹऔΓΉ
ۀͷݹ͍ձࣾͰσʔλͷຽओԽΛਐΊͨ IUUQTTQFBLFSEFDLDPNZPTVLFTV[VLJOJLLFJEBUBESJWFO
ػցֶशτϨʔχϯά • σʔλಓͷൃల൛ • ֎෦ߨࢣট͖ɺػցֶशͷཧϏδωεԠ༻ ͢ΔͨΊͷϊϋͳͲΛֶͿ • ύοέʔδΛΘͳ͍ػցֶशΞϧΰϦζϜͷ࣮ ͔Β࢝Ίɺ࠷ऴతʹػցֶशΛ༻͍ͯࣗࣾαʔϏε ͷσʔλΛੳ
ܦిࢠ൛1SP • ๏ਓ͚ͷʮܦిࢠ൛ʯ IUUQTQSOJLLFJDPNQSP • ෳਓͰهࣄͷίϝϯτڞ༗͕Ͱ͖Δάϧʔϓ ػೳͳͲɺݸਓܖͷܦిࢠ൛ʹͳ͍ػೳɾ ίϯςϯπ͕ॆ࣮ • ຊܖલͷແྉτϥΠΞϧΛఏڙ
• ແྉτϥΠΞϧ͔ΒຊܖʹࢸΔׂ߹ɺ͢ͳΘͪ ʮຊܖʯɺച্ʹ݁͢Δॏཁͳࢦඪ
ࠓճͷੳͷత • ຊܖͷ্Λࢦ͠ɺաڈʹແྉτϥΠΞϧ ͔Βຊܖͨ͠ʗ͠ͳ͔ͬͨϢʔβΛରʹ͠ɺ ͦΕͧΕͲͷΑ͏ͳಛ͕͋Δ͔Ѳ • Ϣʔβͷଐੑใར༻ʹؔ͢Δใ͔Βɺ ػցֶशΛ༻͍Δ͜ͱͰେྔͷσʔλΛॲཧ͠ɺ ຊܖ͢Δ͔൱͔ʹؔΘΔಛΛఆੑతͰͳ͘ ఆྔతʹಛఆ
ಛྔͷॏཁ આ໌ม !ɿ Ϣʔβଐੑར༻ user_id "# "$ ... "%
& 00000001 0 00000002 1 00000003 0 తม yɿ ຊܖʹࢸ͔ͬͨ൱͔ ػցֶशϞσϧ ಗ໊Խ͞Εͨ*% ༧ଌʹ༻͍ͨಛͷॏཁΛࢉग़ ˠຊܖʹӨڹ͢ΔಛͱԿ͔ʁ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
"UMBT • ͨ͠ϦΞϧλΠϜσʔλॲཧج൫ʮ"UMBTʯ ϦΞϧλΠϜσʔλॲཧج൫ ʮ"UMBTʯ ͷιʔείʔυΛެ։͠·͢ IUUQTIBDLOJLLFJDPNCMPHBUMBT@PQFOTPVSDF@QSPKFDU
42- 1ZUIPOͰੳ • 3FEBTI্Ͱ42-Λॻ͖ɺσʔλΛऔಘ • ࠓճػցֶशΛ༻͍ͨൺֱతෳࡶͳੳΛߦ͏ ߹্ɺ42-Ͱσʔλऔಘ·ͰΛѻ͍ɺΓͷ ॲཧ1ZUIPOΛར༻ • ˞,JCBOB
%0.0 34UVEJPͳͲར༻Ͱ͖Δ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
୳ࡧతσʔλੳʢ&%"ʣ • औಘͨ͠σʔλͷ֤ಛͷɺܽམͷ༗ແ ͳͲΛ֬ೝ • ݸਓతͳݟղͱͯ͠ɺϏδωεͷੈքͰσʔλΛ ѻ্͍ͬͯ͘Ͱಛʹॏཁͳաఔ • ,BHHMFͳͲͱൺɺϏδωεͰղܾ͖͢ Λಛఆ͠ԾઆΛཱͯΔ͜ͱʹՁ͕͋Δ
σʔλΛදࣔ͢Δ • ଐੑใ͕ఔɺΞΫηεใ͕ఔ
σʔλͷ֓ཁΛ͔ͭΉ • جૅ౷ܭྔܽଛΛோΊΔ • ! == 0 ͕ଟ͍ෆۉߧσʔλ • ʮอଘهࣄʯʮࣗ༝ճͷଐੑใʯʹܽଛ
• ˞લऀ42-ͷॻ͖ํͷʢKPJOʣ
U4/&ͰՄࢹԽ • ߴ࣍ݩσʔλͷ࣍ݩݮͷख๏ • ԫ৭ͷ ! == 1 ͕ൺֱత·ͱ·ͬͨҐஔʹ
ܽଛΧςΰϦมͷॲཧ • ܽଛ͕ଟ͗͢Δมআ • ʮอଘهࣄʯͷܽଛͰຒΊΔ • ΧςΰϦมμϛʔมʹ
-FBLBHFͷআ • ༧ଌͷରͱͳΔʹؔ͢Δ༧ظͤ͵ใֶ͕श σʔλʹଘࡏ͢ΔͨΊɺػցֶशΞϧΰϦζϜ ͕ඇݱ࣮తʹߴ͍ਫ਼Λࣔ͢ݱ • ࠓճʮຊܖਃ͠ࠐΈखଓ͖ϖʔδͷӾཡʯ ͕-FBLBHFʹ • ຊܖΛਃ͠ࠐΉखଓ͖ϖʔδΛӾཡ͍ͯ͠Δ
Ϣʔβɺવ΄΅ͷ֬ͰຊܖʹࢸΔ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
ػցֶशϞσϧͷબఆ • ਖ਼ղ"6$ͰϞσϧͷਫ਼Λൺֱ
(SBEJFOU#PPTUJOH$MBTTJGJFS • TLMFBSOͷޯϒʔεςΟϯάܾఆΛ࠾༻ • ཧ༝ᶃ ಛͷॏཁΛࢉग़Ͱ͖ɺతʹ߹க • ཧ༝ᶄ 47$ͱൺೋྨҎ֎ʹԠ༻͍͢͠ •
(SJE4FBSDI$7ͰϋΠύʔύϥϝʔλௐ • ަࠩݕূͷ"6$Ͱఔ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
ಛͷॏཁ • ࠓճͷ༧ଌϞσϧʹ͓͚ΔಛͷॏཁΛग़ྗ • ˞աʹಛͷॏཁΛ৴ͣ͡ɺཧతഎܠΛҙࣝ ͯ͠৻ॏʹղऍ͢Δඞཁ͕͋Δ • αʔϏεӦۀɾϚʔέςΟϯάͷ୲ऀʹڞ༗ ͠ɺࠓޙͷࢪࡦʹ͚ͨٞͷࡐྉʹ
·ͱΊ • ػցֶशΛ༻͍ͯܦిࢠ൛1SPͷϢʔβੳΛ ࣮ࢪ͠ɺແྉτϥΠΞϧ͔ΒຊܖʹࢸΔཁҼͱ ͳΔಛΛఆྔతʹಛఆͨ͠ • Ұݟʮݹष͍ʯຊܦࡁ৽ฉࣾͰɺσʔλ׆༻͕ ੵۃతʹల։͞Ε͍ͯΔ ʢσʔλಓɾσʔλج൫ɾػցֶशͳͲʣ