Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を⽤いた⽇経電⼦版Proのユーザ分析 / Data Analysis in Nikke...
Search
Shotaro Ishihara
January 22, 2019
Business
8
10k
機械学習を⽤いた⽇経電⼦版Proのユーザ分析 / Data Analysis in Nikkei using Machine Learning
Data Driven Developer Meetup #4 (#d3m) での発表資料
https://d3m.connpass.com/event/115217/
Shotaro Ishihara
January 22, 2019
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
130
記者・編集者との協働:情報技術が変えるニュースメディア / Kaishi PU 2024
upura
0
71
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
240
マルチモーダル AI 実装の課題と解決策 / Developer X Summit
upura
0
270
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
810
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
upura
3
1k
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
66
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
510
第19回YANSシンポジウムスポンサー資料 / yans2024-nikkei
upura
0
72
Other Decks in Business
See All in Business
SaaSの次なる潮流BPaaS ゼロイチの事業づくりと伴走するプロダクト開発の裏側
kubell_hr
3
2k
freee Movement Deck
freee
0
2.8k
AIタレントフォース_Company_Deck.pdf
d_asato
0
170
因果推論が浸透した組織の現状と未来 / The Present and Future of Organizations Embracing Causal Inference
yusukekayahara
0
760
【全ポジション共通】㈱エグゼクション/会社紹介資料
exe_recruit
1
1.1k
merpay-Overview
mercari_inc
7
170k
多様なマネジメント経験から導き出した、事業成長を支えるEMの4つのコンピテンシー / 4 Key EM Competencies for Growth
rakus_dev
1
850
RAKSUL Introduction / English Ver.
raksulrecruiting
0
390
2025.02_中途採用資料.pdf
superstudio
PRO
0
63k
株式会社SAFELY 会社紹介 / Company
safely_pr
1
320
202503_CMC高知_コミュニティマーケティングによって生まれる 3つの企業価値
xxxayaozaxxx
PRO
0
340
エンジニア職/新卒向け会社紹介資料(テックファーム株式会社)
techfirm
1
3.9k
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
336
57k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Documentation Writing (for coders)
carmenintech
67
4.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Six Lessons from altMBA
skipperchong
27
3.6k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
133
33k
Building Adaptive Systems
keathley
40
2.4k
Fireside Chat
paigeccino
34
3.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Optimizing for Happiness
mojombo
376
70k
Transcript
ػցֶशΛ༻͍ͨ ܦిࢠ൛1SPͷϢʔβੳ ຊܦࡁ৽ฉࣾ ੴݪↅଠ %BUB%SJWFO%FWFMPQFS.FFUVQ +BOOE
ٕज़ॻయͰࣥචɾެ։ ٕज़ॻయ̑Ͱ൦ͨ͠ܦిࢠ൛ͷٕज़ॻΛ࠶ൢ͠·͢ɻ IUUQTOPUFNVOJLLFJ@TUBGGOODCBC • ୲ͨ͠ୈষʮػցֶशΛ༻͍ͨܦిࢠ൛1SP ͷϢʔβੳʯશͯແঈެ։த
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
ࣗݾհ • ੴݪↅଠ !VQVSB • ຊܦࡁ৽ฉࣾ ݄ೖࣾ • σʔλΞφϦετˍΤϯδχΞ •
େֶ࣌ɿֶֶ෦ɺ՝֎׆ಈେֶ৽ฉ • झຯɿ,BHHMFɺڝϓϩɺϒϩά ʢ݄BEWFOUDBMFOEBSͳͲͰຊࣥචʣ
σʔλυϦϒϯνʔϜ • αʔϏεاըɾ։ൃӦۀɾϚʔέςΟϯάͰ ʮσʔλΛۙʹʯ • ୯ͳΔੳ͚ͩͰͳ͘ɺج൫ͷඋɺଌఆ߲ͷ ઃܭɺۀޮԽʹ͚ͨڥඋͳͲ • ར༻ݴޠɿ42- 1ZUIPO
3 /PEFKT ຊޠ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
σʔλಓ • σʔλυϦϒϯΛՃ͢Δڭҭ੍ʢʙʣ • ੳ୲ऀ͚ͩͰͳ͘ฤूɾӦۀɾࠂͷؔऀΒ ͕ɺ42-σʔλʹجͮ͘1%$"ͷճ͠ํΛֶͿ • Χ݄ʹΘͨΓिʹҰɺۀ࣌ؒͷ࣌ؒ ͷͰूதతʹऔΓΉ
ۀͷݹ͍ձࣾͰσʔλͷຽओԽΛਐΊͨ IUUQTTQFBLFSEFDLDPNZPTVLFTV[VLJOJLLFJEBUBESJWFO
ػցֶशτϨʔχϯά • σʔλಓͷൃల൛ • ֎෦ߨࢣট͖ɺػցֶशͷཧϏδωεԠ༻ ͢ΔͨΊͷϊϋͳͲΛֶͿ • ύοέʔδΛΘͳ͍ػցֶशΞϧΰϦζϜͷ࣮ ͔Β࢝Ίɺ࠷ऴతʹػցֶशΛ༻͍ͯࣗࣾαʔϏε ͷσʔλΛੳ
ܦిࢠ൛1SP • ๏ਓ͚ͷʮܦిࢠ൛ʯ IUUQTQSOJLLFJDPNQSP • ෳਓͰهࣄͷίϝϯτڞ༗͕Ͱ͖Δάϧʔϓ ػೳͳͲɺݸਓܖͷܦిࢠ൛ʹͳ͍ػೳɾ ίϯςϯπ͕ॆ࣮ • ຊܖલͷແྉτϥΠΞϧΛఏڙ
• ແྉτϥΠΞϧ͔ΒຊܖʹࢸΔׂ߹ɺ͢ͳΘͪ ʮຊܖʯɺച্ʹ݁͢Δॏཁͳࢦඪ
ࠓճͷੳͷత • ຊܖͷ্Λࢦ͠ɺաڈʹແྉτϥΠΞϧ ͔Βຊܖͨ͠ʗ͠ͳ͔ͬͨϢʔβΛରʹ͠ɺ ͦΕͧΕͲͷΑ͏ͳಛ͕͋Δ͔Ѳ • Ϣʔβͷଐੑใར༻ʹؔ͢Δใ͔Βɺ ػցֶशΛ༻͍Δ͜ͱͰେྔͷσʔλΛॲཧ͠ɺ ຊܖ͢Δ͔൱͔ʹؔΘΔಛΛఆੑతͰͳ͘ ఆྔతʹಛఆ
ಛྔͷॏཁ આ໌ม !ɿ Ϣʔβଐੑར༻ user_id "# "$ ... "%
& 00000001 0 00000002 1 00000003 0 తม yɿ ຊܖʹࢸ͔ͬͨ൱͔ ػցֶशϞσϧ ಗ໊Խ͞Εͨ*% ༧ଌʹ༻͍ͨಛͷॏཁΛࢉग़ ˠຊܖʹӨڹ͢ΔಛͱԿ͔ʁ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
"UMBT • ͨ͠ϦΞϧλΠϜσʔλॲཧج൫ʮ"UMBTʯ ϦΞϧλΠϜσʔλॲཧج൫ ʮ"UMBTʯ ͷιʔείʔυΛެ։͠·͢ IUUQTIBDLOJLLFJDPNCMPHBUMBT@PQFOTPVSDF@QSPKFDU
42- 1ZUIPOͰੳ • 3FEBTI্Ͱ42-Λॻ͖ɺσʔλΛऔಘ • ࠓճػցֶशΛ༻͍ͨൺֱతෳࡶͳੳΛߦ͏ ߹্ɺ42-Ͱσʔλऔಘ·ͰΛѻ͍ɺΓͷ ॲཧ1ZUIPOΛར༻ • ˞,JCBOB
%0.0 34UVEJPͳͲར༻Ͱ͖Δ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
୳ࡧతσʔλੳʢ&%"ʣ • औಘͨ͠σʔλͷ֤ಛͷɺܽམͷ༗ແ ͳͲΛ֬ೝ • ݸਓతͳݟղͱͯ͠ɺϏδωεͷੈքͰσʔλΛ ѻ্͍ͬͯ͘Ͱಛʹॏཁͳաఔ • ,BHHMFͳͲͱൺɺϏδωεͰղܾ͖͢ Λಛఆ͠ԾઆΛཱͯΔ͜ͱʹՁ͕͋Δ
σʔλΛදࣔ͢Δ • ଐੑใ͕ఔɺΞΫηεใ͕ఔ
σʔλͷ֓ཁΛ͔ͭΉ • جૅ౷ܭྔܽଛΛோΊΔ • ! == 0 ͕ଟ͍ෆۉߧσʔλ • ʮอଘهࣄʯʮࣗ༝ճͷଐੑใʯʹܽଛ
• ˞લऀ42-ͷॻ͖ํͷʢKPJOʣ
U4/&ͰՄࢹԽ • ߴ࣍ݩσʔλͷ࣍ݩݮͷख๏ • ԫ৭ͷ ! == 1 ͕ൺֱత·ͱ·ͬͨҐஔʹ
ܽଛΧςΰϦมͷॲཧ • ܽଛ͕ଟ͗͢Δมআ • ʮอଘهࣄʯͷܽଛͰຒΊΔ • ΧςΰϦมμϛʔมʹ
-FBLBHFͷআ • ༧ଌͷରͱͳΔʹؔ͢Δ༧ظͤ͵ใֶ͕श σʔλʹଘࡏ͢ΔͨΊɺػցֶशΞϧΰϦζϜ ͕ඇݱ࣮తʹߴ͍ਫ਼Λࣔ͢ݱ • ࠓճʮຊܖਃ͠ࠐΈखଓ͖ϖʔδͷӾཡʯ ͕-FBLBHFʹ • ຊܖΛਃ͠ࠐΉखଓ͖ϖʔδΛӾཡ͍ͯ͠Δ
Ϣʔβɺવ΄΅ͷ֬ͰຊܖʹࢸΔ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
ػցֶशϞσϧͷબఆ • ਖ਼ղ"6$ͰϞσϧͷਫ਼Λൺֱ
(SBEJFOU#PPTUJOH$MBTTJGJFS • TLMFBSOͷޯϒʔεςΟϯάܾఆΛ࠾༻ • ཧ༝ᶃ ಛͷॏཁΛࢉग़Ͱ͖ɺతʹ߹க • ཧ༝ᶄ 47$ͱൺೋྨҎ֎ʹԠ༻͍͢͠ •
(SJE4FBSDI$7ͰϋΠύʔύϥϝʔλௐ • ަࠩݕূͷ"6$Ͱఔ
ຊͷ • ࣗݾհ • σʔλಓͱʮܦిࢠ൛1SPʯ • σʔλͷऔಘ • ୳ࡧతσʔλੳͱલॲཧ •
༧ଌϞσϧͷߏங • ݁ՌͷղऍͱϏδωε׆༻
ಛͷॏཁ • ࠓճͷ༧ଌϞσϧʹ͓͚ΔಛͷॏཁΛग़ྗ • ˞աʹಛͷॏཁΛ৴ͣ͡ɺཧతഎܠΛҙࣝ ͯ͠৻ॏʹղऍ͢Δඞཁ͕͋Δ • αʔϏεӦۀɾϚʔέςΟϯάͷ୲ऀʹڞ༗ ͠ɺࠓޙͷࢪࡦʹ͚ͨٞͷࡐྉʹ
·ͱΊ • ػցֶशΛ༻͍ͯܦిࢠ൛1SPͷϢʔβੳΛ ࣮ࢪ͠ɺແྉτϥΠΞϧ͔ΒຊܖʹࢸΔཁҼͱ ͳΔಛΛఆྔతʹಛఆͨ͠ • Ұݟʮݹष͍ʯຊܦࡁ৽ฉࣾͰɺσʔλ׆༻͕ ੵۃతʹల։͞Ε͍ͯΔ ʢσʔλಓɾσʔλج൫ɾػցֶशͳͲʣ