Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
英語教育研究を始める前に考えておきたいこと
Search
Ken Urano
June 02, 2018
Education
0
820
英語教育研究を始める前に考えておきたいこと
LET関西支部メソドロジー研究部会
@関西大学千里山キャンパス
2018. 6. 2.
Ken Urano
June 02, 2018
Tweet
Share
More Decks by Ken Urano
See All by Ken Urano
The Task is not the End: The Role of Task Repetition and Sequencing In Language Teaching
uranoken
0
480
学習者を対象にした英語教育研究における倫理的配慮
uranoken
0
960
学習者データを「見る」:外国語教師のためのデータの入力、分析、解釈方法
uranoken
0
1.1k
英語教育研究でエビデンスを「つくる」:メタ分析、再現性、追試
uranoken
0
1.3k
タスク·ベースの英語授業:基本的な考え方とデザイン方法
uranoken
0
1.2k
英語の授業をタスクで組み立てる
uranoken
0
1.3k
Designing Task-based ESP Syllabi: Two Cases from an English for Business Purposes Program
uranoken
0
1.3k
第二言語習得と外国語教育における 「文法知識」の位置づけ
uranoken
0
1.3k
英語教育研究の始め方・進め方:目的に合致した手法選択の重要性
uranoken
1
970
Other Decks in Education
See All in Education
チーム開発における責任と感謝の話
ssk1991
0
250
みんなのコードD&I推進レポート2025 テクノロジー分野のジェンダーギャップとその取り組みについて
codeforeveryone
0
210
Linuxのよく使うコマンドを解説
mickey_kubo
1
270
社外コミュニティと「学び」を考える
alchemy1115
2
180
~キャラ付け考えていますか?~ AI時代だからこそ技術者に求められるセルフブランディングのすゝめ
masakiokuda
7
470
(2025) L'origami, mieux que la règle et le compas
mansuy
0
130
【品女100周年企画】Pitch Deck
shinagawajoshigakuin_100th
0
6k
CHARMS-HP-Banner
weltraumreisende
0
800
H5P-työkalut
matleenalaakso
4
40k
フィードバックの伝え方、受け身のココロ / The Way of Feedback: Words and the Receiving Heart
spring_aki
1
140
サンキッズゾーン 春日井駅前 ご案内
sanyohomes
0
940
2026 g0v 零時政府年會啟動提案 / g0v Summit 2026 Kickstart
rschiang
0
280
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
Rails Girls Zürich Keynote
gr2m
95
14k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Visualization
eitanlees
148
16k
Facilitating Awesome Meetings
lara
55
6.5k
GraphQLとの向き合い方2022年版
quramy
49
14k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Unsuck your backbone
ammeep
671
58k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Transcript
ӳޠڭҭݚڀΛ࢝ΊΔલʹ ߟ͓͖͍͑ͯͨ͜ͱ Ӝ ݚʢւֶԂେֶʣ email:
[email protected]
LETؔࢧ෦ϝιυϩδʔݚڀ෦ձ ؔେֶઍཬࢁΩϟϯύε ɹɹ2018. 6.
2. http://www.urano-ken.com/research/methoken2018
͡Ίʹ ຊߨԋɺୈ38ճKELESηϛφʔʢ2016.10. 1. ˏۙـେֶʣͰͷҎԼͷߨԋ༰ʹج͍ͮͯ ͍·͢ɻ ❝ ͡ΊͷҰาΛ౿Έग़ͨ͢Ίʹɿ ӳޠڭҭݚڀͷೖޱ
͡Ίʹ • ͡Ίͯͷӳޠڭҭݚڀɿ ԡ͓͖͍͑ͯͨ͞ίπͱ ϙΠϯτʢݚڀࣾʣ • ຊॻͷ༰ʹ৮Εͭͭɺຊॻ ʹؚΊΔ͜ͱͷͰ͖ͳ͔ͬͨ ͜ͱΛ͓͠͠·͢ ݚڀ
͡Ίʹ ʮݚڀʯͱԿ͔ ݚڀ
ݚڀʢresearchʣͱ Research is a systematic process of inquiry consisting of
three elements or components: a. a question, problem, or hypothesis b. data, and c. analysis and interpretation of data (Nunan, 1992, p. 3) question data interpretation
question data interpretation → → ݚڀʢresearchʣͱ systematic
ݚڀ՝ σʔλ ղऍ → → ݚڀʢresearchʣͱ ϧʔϧʢํ๏ʣ
ݚڀʢresearchʣͱ • ݚڀͱɺݚڀ՝ʢ͍ʣΛઃఆ͠ɺ ࠜڌͱͳΔσʔλΛूΊɺͦͷ͑Λ ಋ͖ग़͢ӦΈ • ্هͷ̏ཁૉͦΕͧΕʹ͍ͭͯҰఆͷ ଋ͝ͱ͕͋Δ
ݚڀͷతʢgoalʣ • ݚڀՌΛͲ͜ʹؐݩ͢Δ͔ • ڭࢣʢݚڀऀʣݸਓ • ӳޠڭҭʢݚڀʣશମ
ݚڀͷతʢgoalʣ • ڭࢣݸਓͷؐݩΛࢦ͢ • ࣮ફͱͯ͠ͷݚڀ ʢpractitioner researchʣ • શମͷؐݩΛࢦ͢ •
ֶज़తͳݚڀ ʢacademic researchʣ
ݚڀͷతʢgoalʣ • ࣮ફͱͯ͠ͷݚڀͷత • ࣗͷੜెͨͪʹ͍ͭͯͷཧղΛ ਂΊɺ࣮ફ্ͷΛղܾ͢Δ • ڭࢣͱͯ͠ͷ
ݚڀͷతʢgoalʣ • ྫɿ • ࢼߦࡨޡͷ݁Ռɺࣗͷतۀ͕ ͏·͍͘͘Α͏ʹͳͬͨ • ੜె͕ΔؾΛݟͤΔΑ͏ʹͳͬͨ • ࣗͷ୲Ϋϥεͷ্͕͕ͬͨ
ݚڀͷతʢgoalʣ • ֶज़తͳݚڀͷత • ӳޠڭҭʢݚڀʣશମΛҰา લʹਐΊΔͨΊͷߩݙ • ࣗͷΫϥεҎ֎Ͱཱͭݟ • ଞͷจ຺Ͱͯ·Δݟ
ݚڀͷతʢgoalʣ • ࣮ફͱͯ͠ͷݚڀͱֶज़తͳݚڀ • ༏ྼͳ͍ • త͕ҟͳΓɺํ๏͕ҟͳΔ
࣮ફͱͯ͠ͷݚڀ • ϦϑϨΫςΟϒͳӳޠڭҭΛ ࢦͯ͠ɿڭࢣͷޠΓ͕͘ तۀݚڀʢͻͭ͡ॻʣ • ࣮ફͱͯ͠ͷݚڀͷํ๏ ࣄྫΛऩ ݚڀ
࣮ફͱͯ͠ͷݚڀ • ΑΓΑ͍࣮ફݚڀΛߦ͏ͨΊ ͷ10ͷϙΠϯτʢ౻ా, 2016ʣ • ࣮ફݚڀΛߦ͏ͨΊͷϙΠϯ τͷཧͱࣄྫͷհ https://drive.google.com/file/d/0B-OpnEJKrYAdQzNRb1pDY0pQaUE/view ݚڀ
ֶज़తͳݚڀ ݚڀ • ݚڀՌΛશମʹؐݩ͢ΔͨΊʹ • ࣗͷݚڀͱଞͷݚڀʢઌߦݚڀʣ ͱͷؔΛ໌֬ʹࣔ͢ • ݚڀ݁Ռ͕ଞͷจ຺ʹస༻ʢԠ༻ʣ ՄೳʹͳΔͨΊͷखଓ͖Λ౿Ή
ݚڀͷ̏ཁૉ ݚڀ՝ σʔλ ղऍʢ͑ʣ
ݚڀ՝ͷઃఆํ๏ 1. ͓ΑͦͷݚڀςʔϚΛܾΊΔ 2. ڵຯɾؔ৺ɺݚڀՁɺ࣮ߦՄೳੑΛ ݕ౼͢Δ 3. ؔ࿈͢ΔݚڀʢઌߦݚڀʣΛूΊɺ ಡΈɺ·ͱΊΔ ݚڀ՝
ݚڀ՝ͷઃఆํ๏ 1. ͓ΑͦͷݚڀςʔϚΛܾΊΔ 2. ڵຯɾؔ৺ɺݚڀՁɺ࣮ߦՄೳੑΛ ݕ౼͢Δ 3. ؔ࿈͢ΔݚڀʢઌߦݚڀʣΛूΊɺ ಡΈɺ·ͱΊΔ ݚڀ՝
ݚڀ՝ͷઃఆํ๏ • ڵຯɾؔ৺ • Γ͍ͨ͜ͱ • ݚڀՁ • Δ͖͜ͱɺٻΊΒΕ͍ͯΔ͜ͱ •
࣮ߦՄೳੑ • ΕΔ͜ͱ
ݚڀ՝ͷઃఆํ๏ • ઌߦݚڀͷ·ͱΊ 1. ݚڀςʔϚ͕ͲͷΑ͏ͳΓޱͰ ѻΘΕ͖͔ͯͨ 2. Կ͕ௐࠪ͞ΕɺԿ͕໌͠ɺ Կ͕Θ͔͍ͬͯͳ͍͔ 3.
ཧతܽؕɺํ๏తͳ͍͔
ݚڀ՝ͷઃఆํ๏ • Α͍ݚڀ՝ • ઌߦݚڀͰॏཁͩͱࢦఠ͞Ε͍ͯΔ ͷʹेௐࠪ͞Ε͍ͯͳ͍ͷ • ઌߦݚڀʹ͕͋ΓɺͦΕΛ ղܾ͢Δͷ
ݚڀͷछྨ छྨ Ξϓϩʔν త ୳ࡧʗݕূ จݙݚڀ 1. ઌߦݚڀΛཧ͠༰Λݕ౼͢Δ ࣮ূݚڀ ࣭తݚڀ
1. จ຺Λߟྀͯ͠ࣄΛଊ͑Δ ୳ࡧܕ ݕূܕ 2. จ຺Λߟྀͯ͠ࢀՃऀͷม༰Λଊ͑Δ 3. ࢀՃऀͷܦݧೝࣝΛଊ͑Δ 4. ઌߦݚڀͷର֎ͷࣄΛ໌Β͔ʹ͢Δ 5. ݚڀͷ৴ጪੑΛߴΊΔ ྔతݚڀ 1. ࣄͷಛΛྔతʹهड़͢Δ 2. ࣄͷؔ࿈ੑΛଊ͑Δ 3. ࣄͷࠩҟҼՌؔΛଊ͑Δ Ӝଞʢ2016, p. 8ʣ
୳ࡧͱݕূ • ୳ࡧܕͷݚڀ • ઌߦݚڀ͕ੵ͞Ε͍ͯͳ͍ςʔϚ • ؍ฉ͖औΓͳͲʹΑΓஸೡʹ σʔλΛऩू͠ɺͦͷத͔ΒԿΒ͔ ͷํੑΛݟग़͢͜ͱΛࢦ͢
୳ࡧͱݕূ • ݕূܕͷݚڀ • ઌߦݚڀ͕ੵ͞Εɺ݁Ռʹ͍ͭͯ ͋Δఔ༧ଌͷཱͯΒΕΔςʔϚ • ʮԾઆʯΛઃఆͯͦ͠ΕΛݕূ͢Δ
σʔλͱղऍ • ݚڀ՝ʹ߹ͬͨσʔλΛूΊΔ • σʔλͷछྨʹ߹ͬͨੳɾղऍΛ ߦ͏
σʔλऩू๏ • ࣄྫݚڀʢcase studyʣ • ؍ฉ͖औΓʹΑΓਂ͘ௐࠪ͢Δ • ௐࠪݚڀʢsurvey studyʣ •
հೖΛߦΘͣʹσʔλΛऩू͢Δ • ࣮ݧݚڀʢexperimental studyʣ • հೖΛߦ͍ͳ͕ΒσʔλΛऩू͢Δ
ੳɾղऍ • σʔλੳͱɺूΊͨσʔλΛ ղऍՄೳͳܗʹཁ͢Δ͜ͱ • σʔλͷछྨʹΑͬͯཁํ๏͕ ҟͳΔ
σʔλͷछྨ • ࣭తσʔλ • ϑΟʔϧυɾϊʔπΠϯλϏϡʔͷ จࣈى͜͠ͳͲɺԽΛΘͳ͍ ʢݴޠʣσʔλ • ྔతσʔλ •
ௐࠪରΛʹΑͬͯදͨ͠ σʔλ
σʔλͷཁ • ࣭తΞϓϩʔν • ࣭తσʔλΛҙຯతʹཁ͢Δ • ྔతΞϓϩʔν • ྔతσʔλΛ౷ܭతʹཁ͢Δ
࣭తΞϓϩʔν • σʔλੳͱղऍ • ੳͱղऍΛߦ͖དྷ͢Δ • ίʔσΟϯάͱΧςΰϦʔԽ • จ຺ͷॏࢹͱް͍هड़ ʢthick
descriptionʣ • స༻Մೳੑʢtransferabilityʣ
࣭తΞϓϩʔν • σʔλऩू๏ɺੳ๏ͱʹଟ༷ • ํ๏ͷཧղʹɺ࣮ࡍͷݚڀʹ ଟ͘৮ΕΔ͜ͱ͕ඞཁ • Ӝଞʢ2016ʣͷୈ5ষΛࢀর ʢݚڀࣄྫؚΊͨղઆ͕͋Δʣ
ྔతΞϓϩʔν • σʔλੳ • هड़౷ܭͱਪଌ౷ܭ • ແ࡞ҝநग़ɺແ࡞ҝׂͷॏཁੑ
• ͷલͷσʔλʢඪຊʣ͔ΒΑΓେ͖ͳจ຺ ʢूஂʣΛਪఆ͢Δ • ඪຊͰ؍͞ΕΔࠩɾ͕ؔɺूஂ͔Βͷ ඪຊநग़࣌ͷޡࠩͰੜ͡Δ֬ʢp ʣΛ ܭࢉ͢Δ • p
͕ج४ʢྟքʣҎԼͰ͋Εʮ༗ҙʯ Ͱ͋ΔʢޡࠩͰͳ͍ʣͱஅ͢Δ ਪଌ౷ܭʢ༗ҙੑݕఆʣ
• ૬ؔੳͷ߹ɺඪຊͰݟΒΕΔ૬͕ؔແ૬ ؔʢ૬ؔθϩʣͷूஂ͔Βͷඪຊநग़࣌ͷ ޡࠩͰੜ͡Δ֬ʢp ʣΛܭࢉ͢Δ ਪଌ౷ܭʢ༗ҙੑݕఆʣ
ूஂ ඪɹຊ ਪఆ σʔλղੳ Σ, F, t, p... ूஂͱඪຊ
• ͋ΔඪຊͰಘΒΕͨදʢe.g., ฏۉʣ ͱूஂͷදͱͷࠩ ඪຊޡࠩ
ूஂ μ = 15.3 ඪຊA M = 14.7 ඪຊB M
= 15.9 ඪຊC M = 15.2 ඪຊD M = 15.4 ඪຊE M = 15.1
ूஂ μ = 14.7 ඪຊA M = 14.7 ࣮ࡍ M
= μ ͱͯ͠ਪఆ
• ඪຊͷαΠζ͕େ͖͚Εେ͖͍΄Ͳɺ ඪຊޡࠩখ͘͞ͳΔ • ͭ·Γਪఆͷਫ਼͕ߴ͘ͳΔ ඪຊޡࠩ
• ແ࡞ҝநग़ʢrandom samplingʣ • ඪຊ͔ΒूஂΛਪଌ͢Δ͜ͱ͕Մೳͳͷ ɺແ࡞ҝநग़ͷ͓͔͛ • ແ࡞ҝׂʢrandom assignmentʣ •
ෳͷάϧʔϓΛ࡞Δͱ͖ɺແ࡞ҝׂʹΑͬ ͯάϧʔϓؒͷ࣭ੑΛ୲อ͢Δ ແ࡞ҝநग़ɾແ࡞ҝׂ
• • ӳޠڭҭʹ͓͚Δྔతݚڀͷେɺ ແ࡞ҝநग़Λߦ͍ͬͯͳ͍ • ࣮ࡍͷΫϥεΛ͏४࣮ݧݚڀͰɺ ແ࡞ҝׂߦΘΕͳ͍ ແ࡞ҝநग़ɾແ࡞ҝׂ
• ݚڀ݁ՌͷҰൠԽՄೳੑʢgeneralizabilityʣ ͕୲อ͞Ε͍ͯͳ͍ • ݚڀ݁ՌΛଞͷจ຺ʹస༻ʢԠ༻ʣՄೳʹ ͢Δͱ͍͏ɺֶज़తͳݚڀͷେલఏ͕ ຬͨ͞Ε͍ͯͳ͍ ແ࡞ҝநग़ɾແ࡞ҝׂ
• ӳޠڭҭݚڀͰɺ࠷ޙʹʮڭҭతࣔࠦʯΛ ड़Δ͜ͱ͕ظ͞ΕΔ͜ͱ͕ଟ͍ • ୯Ұͷݚڀ͔ΒࣔࠦΛड़ͯΑ͍ͷ͔ ڭҭతࣔࠦ
• ྔతݚڀ • ҰൠԽՄೳੑ͕୲อ͞Ε͍ͯͳ͍߹ɺ ຊདྷͳΒݚڀ݁ՌҰൠԽͰ͖ͳ͍ • ಉ͜͡ͱΛผͷจ຺Ͱߦͬͯɺ ಉ݁͡Ռ͕ಘΒΕΔอূͳ͍ • ࠶ݱੑʢreproducibilityʣ
ڭҭతࣔࠦ
• ࣭తݚڀ • ݚڀ݁Ռ͕จ຺ʹґଘ͢ΔͨΊɺ ͦͦҰൠԽߦΘͳ͍ • ް͍هड़Λߦ͏͜ͱͰɺݚڀ݁Ռ͕ผͷ จ຺Ͱͯ·Δ͔Ͳ͏͔ͷஅΛ ಡऀʹҕͶΔ ڭҭతࣔࠦ
• ӳޠڭҭݚڀʹ͓͍ͯɺ୯Ұͷݚڀ͔Β աͳҰൠԽʢڭҭతࣔࠦʣΛߦ͏ͷ ෆద • ͰͲ͏͢Δʁ ڭҭతࣔࠦ
• ݚڀͷݶքΛਅ伨ʹड͚ࢭΊɺڭҭతࣔࠦ Ͱ͖Δ͚ͩ conservative ͳͷʹཹΊΔ • େ͖ͳڭҭతࣔࠦɺݸʑͷݚڀͰͳ͘ɺ ෳͷؔ࿈ݚڀͷ݁ՌΛ·ͱΊͨܗͰߦ͏ • ݚڀͷ౷߹ʢresearch
synthesisʣͱ ϝλੳʢmeta-analysisʣ • ࢼʢreplicationʣͷॏཁੑ ڭҭతࣔࠦ
• ౷߹ɾࢼʹ͑͏ΔݚڀΛߦ͏͜ͱ͕ॏཁ • ݚڀՁͷߴ͍ςʔϚ • ࢼΛߦ͏ͨΊͷใ։ࣔ • هड़౷ܭྔͷ։ࣔ • ʢͰ͖Εʣແ࡞ҝׂͷσβΠϯ
ڭҭతࣔࠦ
͜͜·Ͱͷ·ͱΊ
͜͜·Ͱͷ·ͱΊ • ݚڀՌͷݸਓͷؐݩΛతͱͨ͠ ࣮ફͱͯ͠ͷݚڀ • ݚڀՌͷҰൠԽΛతͱֶͨ͠ज़తͳݚڀ • ͨͩ͠୯Ұͷݚڀ͔ΒͷҰൠԽ͍͠
͜͜·Ͱͷ·ͱΊ • ֶज़తͳݚڀΛߦ͏ͷ͔ͳΓେม • ӳޠڭࢣݚڀΛߦ͏ඞཁ͕͋Δͷ͔
͜͜·Ͱͷ·ͱΊ • ඞཁͳ͍ɺ͚ͩͲ… • ֶज़తͳݚڀΛ͢Δڭࢣ͕૿͑Δ͜ͱ͕ ݚڀͷੵʹͭͳ͕Γ • ͦͷ݁ՌϑΟʔϧυશମͷൃలʹߩݙͰ͖Δ
ݚڀҎ֎ͷબࢶ • ֶज़తݚڀΛߦ͏ͷ͍͠߹ɺ ࣮ફతͳݚڀʹઓͯ͠ΈΔ • ͦΕ͍͠߹ɺʮݚڀʯߦΘͣʹ ࣮ફͷهΛ͚ͭͯΈΔ • ୳ڀత࣮ફʢexploratory practiceʣ
୳ڀత࣮ફ • Allright (2003) ͕ఏএ • ղܾͰͳ͘ݱঢ়ཧղΛతͱͨ͠׆ಈ • ࣋ଓՄೳͳܗͰͷ׆ಈ •
࣮ફͷهड़ʢهʣͱͦΕʹ͍ͭͯͷল ʢϦϑϨΫγϣϯʣͷه
୳ڀత࣮ફ • ʮݚڀʯͰͳ͍ͨΊൃදػձݶΒΕΔ • த෦۠ӳޠڭҭֶձʢCELESʣͰ࣮ફใࠂ ͱͯ͠ͷ୳ڀత࣮ફ͕ใࠂ͞Ε͍ͯΔ • ࠓޙଞֶձͰ૿͑Δ͜ͱΛظ
• ͡Ίͯͷӳޠڭҭݚڀɿ ԡ͓͖͍͑ͯͨ͞ίπͱ ϙΠϯτʢݚڀࣾʣ • ݚڀͷํ๏ʹ͍ͭͯɺଟ͘ ͷ࣮ྫΛհ͠ͳ͕Βղઆ͠ ͍ͯ·͢ ओͳࢀߟจݙ
• ֎ࠃޠڭҭݚڀϋϯυϒοΫ • ࣭తɾྔతݚڀͷ྆ํʹ͍ͭ ͯஸೡʹղઆ͞Ε͍ͯ·͢ ओͳࢀߟจݙ
શମͷ·ͱΊ
શମͷ·ͱΊ • ࣮ફͱͯ͠ͷݚڀͱֶज़తͳݚڀ • ݚڀͷ̏ཁૉʢݚڀ՝ɺσʔλɺղऍʣ • ҰൠԽͱڭҭతࣔࠦͷ͠͞ • ݚڀͷੵͷॏཁੑ •
୳ڀత࣮ફͷՄೳੑ Ken Urano
[email protected]
http://www.urano-ken.com/research/methoken2018
• Allright, D. (2003). Exploratory Practice: rethinking practitioner research in
language teaching. Language Teaching Research, 7, 113–141. doi:10.1191/1362168803lr118oa • ౻ా. (2016). ΑΓΑ͍࣮ફݚڀΛߦ͏ͨΊͷ10ͷϙΠϯτ. ୈ46ճத෦۠ӳޠڭ ҭֶձࡾॏେձɾӳޠڭҭݚڀ๏ηϛφʔ. Retrieved from: https://drive.google.com/ file/d/0B-OpnEJKrYAdQzNRb1pDY0pQaUE/view • Nunan, D. (1992). Research methods in language learning. Cambridge University Press. • ཧɾਫຊಞ (ฤ). (2014). ʰ֎ࠃޠڭҭݚڀϋϯυϒοΫ: ݚڀख๏ͷΑΓྑ͍ཧղ ͷͨΊʹ (վగ൛)ʱ౦ژ: দദࣾ. • ӜݚɾཧཅҰɾాதɾ౻ాɾ∁ѥرࢠɾञҪӳथ. (2016). ʰ͡Ίͯͷ ӳޠڭҭݚڀ: ԡ͓͖͍͑ͯͨ͞ίπͱϙΠϯτʱ౦ژ: ݚڀࣾ. • ٢ాୡ߂ɾۄҪ݈ɾԣߔਈҰɾࠓҪ༟೭ɾ༄ཅհ (ฤ). (2009). ʰϦϑϨΫςΟϒͳ ӳޠڭҭΛࢦͯ͠: ڭࢣͷޠΓ͕͘तۀݚڀʱ౦ژ: ͻͭ͡ॻ. Ҿ༻จݙ