Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計の基礎1
Search
xjorv
January 24, 2021
Education
0
380
統計の基礎1
統計の基礎1では、確率論と統計の関係、データの分布、回帰について説明します。
xjorv
January 24, 2021
Tweet
Share
More Decks by xjorv
See All by xjorv
コンパートメントモデル
xjorv
3
5.9k
コンパートメントモデルをStanで解く
xjorv
0
490
生物学的同等性試験 検出力の計算法
xjorv
0
3.6k
生物学的同等性試験ガイドライン 同等性パラメータの計算方法
xjorv
0
6.5k
粉体特性2
xjorv
0
2.6k
粉体特性1
xjorv
0
2.9k
皮膜5
xjorv
0
2.4k
皮膜4
xjorv
0
2.3k
皮膜3
xjorv
0
2.3k
Other Decks in Education
See All in Education
10分で学ぶ すてきなモナド
soukouki
1
150
【旧:ZEPメタバース校舎操作ガイド】
ainischool
0
800
AIで日本はどう進化する? 〜キミが生きる2035年の地図〜
behomazn
0
120
自己紹介 / who-am-i
yasulab
PRO
6
6.3k
React完全入門
mickey_kubo
1
120
NUTMEG紹介スライド
mugiiicha
0
920
The browser strikes back
jonoalderson
0
400
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
3k
国際卓越研究大学計画|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
47k
くまのココロンともぐらのロジ
frievea
0
150
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
3.1k
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Utilizing Notion as your number one productivity tool
mfonobong
3
220
WCS-LA-2024
lcolladotor
0
450
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
HDC tutorial
michielstock
1
390
Deep Space Network (abreviated)
tonyrice
0
64
Become a Pro
speakerdeck
PRO
31
5.8k
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
1
1.9k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
Transcript
統計の基礎1 2020/8/17 Ver. 1.0
統計学とは? 多数のデータを扱う方法についての学問分野 • 確率論に由来する • カール・ピアソンによる記述統計の確立を嚆矢とする • ロナルド・フィッシャーによる推計統計を経て発展 • 現代的な機械学習、AIの基礎となっている
確率論と統計の繋がり: 二項分布 コイントスの確率論 • 表と裏(1と0)しかない • ベルヌーイ試行と呼ばれる • ベルヌーイ試行の繰り返し積算: 二項分布にしたがう
二項分布 ベルヌーイ試行を繰り返したときの、表の出る頻度 5回試行 10回試行 100回試行 1000回試行 ほぼ半分出るが、確率的試行なのでばらつきを含む
二項分布の確率質量関数 = ∙ 1 − − P: 表が出る回数がkとなる確率、n: 試行の数、p: 表が出る確率、k:
表が出る回数 二項分布の表が出る回数、確率は以下の式で表わされる • n C k はn回の試行のうち、表が出る組み合わせ • pk(1-p)n-kは表・裏が出る確率の積
二項分布と統計 2値のみで表わされる事象は多い • 感染症の罹患(罹患している/していない) • 試合の勝ち負け • 製品を購入した/しなかった 確率分布を利用したシミュレーション/解析が可能 統計データを確率分布から理解する
データとその分布 確率分布にはたくさんの種類がある 1か0しかないデータ ベルヌーイ試行の繰り返し まれな現象の発生数 まれな現象の発生時間間隔 製品の重さのばらつき 年収の分布 ベルヌーイ分布 二項分布
ポアソン分布 指数分布 正規分布 対数正規分布 分布を仮定することで、データを理解することができる
線形回帰 2つの量の関係を示す式を計算する 最も妥当な線を引くためにはどうするのか?
線形回帰と正規分布 ばらつきは縦に正規分布すると考える 正規分布を仮定すれば、点からの距離の和を最小にすればいい
正規分布とは何か? 母平均と標本平均の誤差の分布のこと • 母集団はあり得るすべての情報を含む • 標本集団は母集団の一部
母集団と標本集団 • 母集団は仮定の集団で、直接観測はできない • 我々が扱うのはすべて標本集団 • 観測できるデータは母集団からの抽出である
正規分布とは何か? 母平均と標本平均の誤差の分布のこと • 標本を抽出し、平均を計算する • 標本の平均と母平均の差を計算する • この試行を無限回繰り返し、差の分布を取る • この差の分布が正規分布にしたがう
(中央極限定理と呼ばれる)
正規分布の確率密度関数 = 1 22 ex p − − 2 22
μは平均、σは標準偏差 • 左右対称・+∞~-∞の範囲を持つ • 標準偏差(σ)範囲に68%のデータが含まれる • 3 σに99.7%のデータが含まれる
正規分布を仮定した線形回帰 最小二乗法は正規分布を仮定した上で成り立つ • 正規分布では上下のばらつきは等価 • 左の赤線の和を最小にすればよい • 二乗和の最小値は計算が用意 直線回帰の基礎は正規分布にある
まとめ • 統計学は確率論の延長上にある • 分布を仮定することで、観測結果を解析できる • 観測データはすべて標本で、母集団は直接観測できない • 正規分布を基に線形回帰が成り立っている