Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計の基礎9 二元分散分析
Search
xjorv
January 30, 2021
Education
0
280
統計の基礎9 二元分散分析
統計の基礎9では、要因が2つ以上ある時の平均値の差の検定である、二元分散分析について説明します。
xjorv
January 30, 2021
Tweet
Share
More Decks by xjorv
See All by xjorv
コンパートメントモデル
xjorv
3
5.7k
コンパートメントモデルをStanで解く
xjorv
0
460
生物学的同等性試験 検出力の計算法
xjorv
0
3.6k
生物学的同等性試験ガイドライン 同等性パラメータの計算方法
xjorv
0
6.3k
粉体特性2
xjorv
0
2.5k
粉体特性1
xjorv
0
2.9k
皮膜5
xjorv
0
2.4k
皮膜4
xjorv
0
2.3k
皮膜3
xjorv
0
2.3k
Other Decks in Education
See All in Education
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.1k
ÉTICA, INCLUSIÓN, EDUCACIÓN INTEGRAL Y NEURODERECHOS EN EL CONTEXTO DEL NEUROMANAGEMENT
jvpcubias
0
120
吉岡研究室紹介(2025年度)
kentaroy47
0
410
HTML5 and the Open Web Platform - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
2
3k
Réaliser un diagnostic externe
martine
0
220
「実践的探究」を志向する日本の教育研究における近年の展開 /jera2025
kiriem
0
110
Web Architectures - Lecture 2 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
フィードバックの伝え方、受け身のココロ / The Way of Feedback: Words and the Receiving Heart
spring_aki
1
170
KBS新事業創造体験2025_科目説明会
yasuchikawakayama
0
130
高校におけるプログラミング教育を考える
naokikato
PRO
0
170
20250910_エンジニアの成長は自覚するところから_サポーターズ勉強会
ippei0923
0
300
Técnicas y Tecnología para la Investigación Neurocientífica en el Neuromanagement
jvpcubias
0
170
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
526
40k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Six Lessons from altMBA
skipperchong
29
4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
600
Thoughts on Productivity
jonyablonski
70
4.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
630
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
540
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Automating Front-end Workflow
addyosmani
1371
200k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Transcript
統計の基礎9 二元分散分析 2021/1/7 Ver. 1.0
二元分散分析とは? 要素が二つある分析のこと 上記の表で、製剤間・年齢間の差はあるかどうか? 血圧 10代 20代 30代 40代 A製剤投与 99
104 104 126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133
グラフにしてみる 傾向を調べるため、点グラフを作成し確認する • 投与なしで値が高そう • 40代では値が高そう
交互作用 関係が平行なら、差を明らかに示すことができる 青>赤 青>赤? • 平行でなければ、差があるかよくわからない • 平行ではない状態を交互作用があると呼ぶ 平行 平行ではない
交互作用 交互作用があれば、分散分析で差があると結論づけられない 青>赤 青>赤? • 交互作用がない • 差のp値が十分小さい 交互作用なし 交互作用あり
ときに、群間の差を示すことができる
分散分析表 一元と同様に、分散分析表を用いて分析する Rでの計算結果 (Nameが製剤になっている)
平方和 自由度 平均平方和 F値 p値 製剤 623 2 311.7 36.197
5.67×10-8 年齢 3655 3 1218.4 141.497 2.17×10-15 製剤×年齢 33 6 5.5 0.635 0.701 残差 207 24 8.6 分散分析表 一元と同様に、分散分析表を用いて分析する 何をどうやって計算しているのか?
年齢の平方和 各年齢の平方和の和と全体の平方和から計算する 10代 20代 30代 40代 A製剤投与 99 104 104
126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133 各列の平方和 268 296.8 124 174.4 863.2 全体の平方和 4518.223 合計 4518.223-863.2=3655.023
10代 20代 30代 40代 各製剤の平方和 A製剤投与 99 104 104 126
1245.64 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 1424.94 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 1224.3 111 106 113 135 111 118 115 133 3894.88 全体の平方和 4518.223 製剤の平方和 各製剤の平方和の和と全体の平方和から計算する 合計 4518.223-3894.88=623.34
平方和 10代 20代 30代 40代 A製剤投与 8.66 18 2.66 8
B製剤投与 48.66 8.66 12.66 14 投与なし 6 72.66 4.66 2 206.62 10代 20代 30代 40代 A製剤投与 99 104 104 126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133 残差の平方和 各製剤/年齢の平方和の和と全体の平方和から計算する 合計
交互作用の平方和 全体の平方和から、製剤・年齢・残差を引く 平方和 自由度 平均平方和 F値 p値 製剤 623 2
311.7 36.197 5.67×10-8 年齢 3655 3 1218.4 141.497 2.17×10-15 製剤×年齢 33 6 5.5 0.635 0.701 残差 207 24 8.6 4518.223-623.343-3655.023-206.62=33.237 全体 製剤 年齢 残差 交互作用
自由度 群間・交互作用の自由度をそれぞれ計算する 群間の自由度は グループ数 - 1 交互作用の自由度は 各群の自由度の積 製剤 年齢
交互作用 3グループ - 1 = 2 4グループ - 1 = 3 2 × 3 = 6 になる 血圧 10代 20代 30代 40代 A製剤投与 99 104 104 126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133
自由度 残差の自由度は他の自由度とデータ数(n)から計算する 36 – 2 – 3 – 6 –
1 = 24 になる 血圧 10代 20代 30代 40代 A製剤投与 99 104 104 126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133 全体 製剤 年齢 残差 交互作用 自由度なので-1 全部でn=36
平均平方和とF値 平方和 自由度 平均平方和 F値 p値 製剤 623 2 311.7
36.197 5.67×10-8 年齢 3655 3 1218.4 141.497 2.17×10-15 製剤×年齢 33 6 5.5 0.635 0.701 残差 207 24 8.6 • 平均平方和は平方和/自由度 • F値は平均平方和/残差平方和 として計算する
二元分散分析における仮説検証 一元と同じだが、群が二種類あるのが特徴 帰無仮説 対立仮説 全グループの平均値は同じ 全グループの平均値は同じではない 分散比と2つの自由度を持つF分布から 全グループの平均値が同じである確率 を計算する
p値 平方和 自由度 平均平方和 F値 p値 製剤 623 2 311.7
36.197 5.67×10-8 年齢 3655 3 1218.4 141.497 2.17×10-15 製剤×年齢 33 6 5.5 0.635 0.701 残差 207 24 8.6 • 他の解析と同様、p<0.05なら有意な差があるとする p値は残差と項目の自由度を持つF分布から計算 *製剤であれば、自由度2(製剤)と自由度24(残差)のF分布からp値を計算する