Upgrade to Pro — share decks privately, control downloads, hide ads and more …

統計の基礎9 二元分散分析

xjorv
January 30, 2021

統計の基礎9 二元分散分析

統計の基礎9では、要因が2つ以上ある時の平均値の差の検定である、二元分散分析について説明します。

xjorv

January 30, 2021
Tweet

More Decks by xjorv

Other Decks in Education

Transcript

  1. 二元分散分析とは? 要素が二つある分析のこと 上記の表で、製剤間・年齢間の差はあるかどうか? 血圧 10代 20代 30代 40代 A製剤投与 99

    104 104 126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133
  2. 平方和 自由度 平均平方和 F値 p値 製剤 623 2 311.7 36.197

    5.67×10-8 年齢 3655 3 1218.4 141.497 2.17×10-15 製剤×年齢 33 6 5.5 0.635 0.701 残差 207 24 8.6 分散分析表 一元と同様に、分散分析表を用いて分析する 何をどうやって計算しているのか?
  3. 年齢の平方和 各年齢の平方和の和と全体の平方和から計算する 10代 20代 30代 40代 A製剤投与 99 104 104

    126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133 各列の平方和 268 296.8 124 174.4 863.2 全体の平方和 4518.223 合計 4518.223-863.2=3655.023
  4. 10代 20代 30代 40代 各製剤の平方和 A製剤投与 99 104 104 126

    1245.64 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 1424.94 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 1224.3 111 106 113 135 111 118 115 133 3894.88 全体の平方和 4518.223 製剤の平方和 各製剤の平方和の和と全体の平方和から計算する 合計 4518.223-3894.88=623.34
  5. 平方和 10代 20代 30代 40代 A製剤投与 8.66 18 2.66 8

    B製剤投与 48.66 8.66 12.66 14 投与なし 6 72.66 4.66 2 206.62 10代 20代 30代 40代 A製剤投与 99 104 104 126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133 残差の平方和 各製剤/年齢の平方和の和と全体の平方和から計算する 合計
  6. 交互作用の平方和 全体の平方和から、製剤・年齢・残差を引く 平方和 自由度 平均平方和 F値 p値 製剤 623 2

    311.7 36.197 5.67×10-8 年齢 3655 3 1218.4 141.497 2.17×10-15 製剤×年齢 33 6 5.5 0.635 0.701 残差 207 24 8.6 4518.223-623.343-3655.023-206.62=33.237 全体 製剤 年齢 残差 交互作用
  7. 自由度 群間・交互作用の自由度をそれぞれ計算する 群間の自由度は グループ数 - 1 交互作用の自由度は 各群の自由度の積 製剤 年齢

    交互作用 3グループ - 1 = 2 4グループ - 1 = 3 2 × 3 = 6 になる 血圧 10代 20代 30代 40代 A製剤投与 99 104 104 126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133
  8. 自由度 残差の自由度は他の自由度とデータ数(n)から計算する 36 – 2 – 3 – 6 –

    1 = 24 になる 血圧 10代 20代 30代 40代 A製剤投与 99 104 104 126 96 98 106 122 100 101 106 124 B製剤投与 99 101 110 132 108 105 107 127 107 102 105 128 投与なし 108 111 112 134 111 106 113 135 111 118 115 133 全体 製剤 年齢 残差 交互作用 自由度なので-1 全部でn=36
  9. 平均平方和とF値 平方和 自由度 平均平方和 F値 p値 製剤 623 2 311.7

    36.197 5.67×10-8 年齢 3655 3 1218.4 141.497 2.17×10-15 製剤×年齢 33 6 5.5 0.635 0.701 残差 207 24 8.6 • 平均平方和は平方和/自由度 • F値は平均平方和/残差平方和 として計算する
  10. p値 平方和 自由度 平均平方和 F値 p値 製剤 623 2 311.7

    36.197 5.67×10-8 年齢 3655 3 1218.4 141.497 2.17×10-15 製剤×年齢 33 6 5.5 0.635 0.701 残差 207 24 8.6 • 他の解析と同様、p<0.05なら有意な差があるとする p値は残差と項目の自由度を持つF分布から計算 *製剤であれば、自由度2(製剤)と自由度24(残差)のF分布からp値を計算する