Upgrade to Pro — share decks privately, control downloads, hide ads and more …

【深度學習】04 圖形辨識的天王 CNN

【深度學習】04 圖形辨識的天王 CNN

2022 政大應數「數學軟體應用」深度學習課程 04

[email protected]

March 28, 2022
Tweet

Other Decks in Technology

Transcript

  1. 數學軟體應⽤ 197 Yann LeCun 1987 Universite Pierre et Marie Curie

    (巴黎第六⼤學) 資訊科學博⼠ University of Toronto 博⼠後研究 1988- Bell 實驗室 2003 NYU 教授 2013 Facebook AI Director Yann LeCun 博⼠就研究 ConvNet (不全連結的神經網路)
  2. 數學軟體應⽤ 207 Filter 卷積的運算 d 11 d 12 d 13

    d 14 d 21 d 22 d 23 d 24 d 31 d 32 d 33 d 34 d 41 d 42 d 43 d 44 … input [ 0 1 0 0 1 0 0 1 0] * filter ⼀個 filter 就像個權 做加 權和, 也就是內積 (dot product)。 d 11 × 0 + d 12 × 1 + d 13 × 0 + d 21 × 0 + d 22 × 1 + d 23 × 0 + d 31 × 0 + d 32 × 1 + d 33 × 0 =
  3. 數學軟體應⽤ 208 Filter 卷積的運算 2 5 5 2 5 2

    0 1 2 3 4 0 4 2 1 5 4 3 1 3 5 5 4 3 5 3 4 5 0 2 1 5 2 3 1 1 1 0 1 3 4 4 1 1 5 1 1 4 2 3 2 2 0 4 2 4 0 5 4 5 3 4 1 4 35 想成這是⼀張圖所成的矩陣 filter 內積 這學來的 W= ⼀個 filter 就看 ⼀個特徵, 紀錄在 記分板上。 記分板
  4. 數學軟體應⽤ 209 Filter 卷積的運算 同⼀個 filter, 當 然矩陣 (權 )

    是 ⼀樣的。 記分板 2 5 5 2 5 2 0 1 2 3 4 0 4 2 1 5 4 3 1 3 5 5 4 3 5 3 4 5 0 2 1 5 2 3 1 1 1 0 1 3 4 4 1 1 5 1 1 4 2 3 2 2 0 4 2 4 0 5 4 5 3 4 1 4 35 27 filter 右移⼀格 還是⼀樣的矩陣 W=
  5. 數學軟體應⽤ 210 Filter 卷積的運算 掃到最後, 完成這個 filter 的計分板。 要注意的是, 這內積的

    部份只有我們原本的加 權和, 事實上還是要加 上偏值、經激發函數轉 換送出! 記分板 2 5 5 2 5 2 0 1 2 3 4 0 4 2 1 5 4 3 1 3 5 5 4 3 5 3 4 5 0 2 1 5 2 3 1 1 1 0 1 3 4 4 1 1 5 1 1 4 2 3 2 2 0 4 2 4 0 5 4 5 3 4 1 4 35 27 44 32 36 38 36 36 37 36 36 43 37 37 23 26 17 35 29 25 22 18 14 27 27 25 24 21 24 32 31 38 27 34 25 40 filter ⼀路到最後 W=
  6. 數學軟體應⽤ 211 為什麼卷積會抽取特徵? [ 0 1 0 0 1 0

    0 1 0] 0 1 0 0 1 0 0 1 0 [ 1 0 0 0 1 0 0 0 1] 3分 1分 Filter 1 Filter 2 圖 我們來看同⼀張圖,對兩 個不同的 filter 運算的 結果。 可以看出⼀樣的會得⾼ 分!
  7. 數學軟體應⽤ 212 為什麼卷積會抽取特徵? [ 0 1 0 0 1 0

    0 1 0] 1 0 0 0 1 0 0 0 1 [ 1 0 0 0 1 0 0 0 1] Filter 1 Filter 2 圖 3分 1分 換另⼀張圖發現, 真的 像的會得到⾼分!
  8. 數學軟體應⽤ 214 輸入的圖每個像素可當成⼀個神經元 2 5 5 2 5 2 0

    1 2 3 4 0 4 2 1 5 4 3 1 3 5 5 4 3 5 3 4 5 0 2 1 5 2 3 1 1 1 0 1 3 4 4 1 1 5 1 1 4 2 3 2 2 0 4 2 4 0 5 4 5 3 4 1 4 35 27 44 32 36 38 36 36 37 36 36 43 37 37 23 26 17 35 29 25 22 18 14 27 27 25 24 21 24 32 31 38 27 34 25 40 filter 圖片上的點是⼀個個輸入層 神經元 W=
  9. 數學軟體應⽤ 215 記分板也是⼀個個神經元組成 2 5 5 2 5 2 0

    1 2 3 4 0 4 2 1 5 4 3 1 3 5 5 4 3 5 3 4 5 0 2 1 5 2 3 1 1 1 0 1 3 4 4 1 1 5 1 1 4 2 3 2 2 0 4 2 4 0 5 4 5 3 4 1 4 35 27 44 32 36 38 36 36 37 36 36 43 37 37 23 26 17 35 29 25 22 18 14 27 27 25 24 21 24 32 31 38 27 34 25 40 filter Conv 層也是⼀個個神經元 W= 記分板每⼀個分數的位 ⼦也是⼀個神經元。
  10. 數學軟體應⽤ 216 不是完全連結的神經網路 記分板⼀個數字 (⼀個 神經元) 只和輸入的九 個神經元相連。 2 5

    5 2 5 2 0 1 2 3 4 0 4 2 1 5 4 3 1 3 5 5 4 3 5 3 4 5 0 2 1 5 2 3 1 1 1 0 1 3 4 4 1 1 5 1 1 4 2 3 2 2 0 4 2 4 0 5 4 5 3 4 1 4 35 27 44 32 36 38 36 36 37 36 36 43 37 37 23 26 17 35 29 25 22 18 14 27 27 25 24 21 24 32 31 38 27 34 25 40 filter 兩層中沒有完全相連 W=
  11. 數學軟體應⽤ 217 權 是相同的 (對同⼀個 filter) 2 5 5 2

    5 2 0 1 2 3 4 0 4 2 1 5 4 3 1 3 5 5 4 3 5 3 4 5 0 2 1 5 2 3 1 1 1 0 1 3 4 4 1 1 5 1 1 4 2 3 2 2 0 4 2 4 0 5 4 5 3 4 1 4 35 27 44 32 36 38 36 36 37 36 36 43 37 37 23 26 17 35 29 25 22 18 14 27 27 25 24 21 24 32 31 38 27 34 25 40 filter 再來 share 同樣的 weights W=
  12. 數學軟體應⽤ 218 記分板的⼤⼩ 注意⼀張原本 的圖, 經⼀個 ⼤⼩的 filter 卷積, 會得到差

    不多⼤⼩ 記分板! ⽽且再來我們會討論到, 我們甚⾄ 更喜歡把記分板做成和原本圖的⼤ ⼩⼀樣。 那要是我們有 10 個記分板, 不就⼗ 倍的數據 !? 8 × 8 3 × 3 6 × 6 35 27 44 32 36 38 36 36 37 36 36 43 37 37 23 26 17 35 29 25 22 18 14 27 27 25 24 21 24 32 31 38 27 34 25 40
  13. 數學軟體應⽤ 219 記分板的⼤⼩ 1 0 0 0 0 1 0

    0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 [ 0 1 0 0 1 0 0 1 0] Filter 1 0 0 0 0 0 0 0 0 0 圖 記分板 padding="valid" 如前述的掃描⽅式, 記分板 比原來圖略⼩, 但邊緣常會 掃不到 (像本例中的直線)。
  14. 數學軟體應⽤ 220 記分板的⼤⼩ 我們喜歡把原圖外⾯加圈 0, 讓記分板和原圖⼤⼩⼀ 樣! 注意這次有「看到」直線 了。 0

    0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 [ 0 1 0 0 1 0 0 1 0] Filter 1 2 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 2 0 0 0 0 圖 記分板 padding="same" 外⾯加圈 0! 注意和原 圖⼀樣⼤!
  15. 數學軟體應⽤ 223 Max-Pooling 35 27 44 32 36 38 36

    36 37 36 36 43 37 37 23 26 17 35 29 25 22 18 14 27 27 25 24 21 24 32 31 38 27 34 25 40 36 44 43 37 26 35 38 34 40 每區選出最⼤的!! 這樣記分板 瞬間變⼩!
  16. 數學軟體應⽤ 224 常⾒ CNN 設計架構 Conv Max-
 Pooling Dense Max-


    Pooling Max-
 Pooling Conv Conv 可以不斷 覆卷積、池化、卷積、池化... 最後再 接全連結神經網路總結。
  17. 數學軟體應⽤ 226 標準 CNN 應⽤ f 感染/未感染 Differentiation of Cytopathic

    Effects Induced by Influenza Virus Infection Using Deep Convolutional Neural Networks Ting-En Wang, Tai-Ling Chao, Hsin-Tsuen Tsai, Pi-Han Lin, Yen-Lung Tsai, Sui-Yuan Chang 流感檢測。