[고벤처 포럼] 한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면

[고벤처 포럼] 한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면

2019년 8월 고벤처포럼 특강 자료입니다.

C4062e3905413c5857e8ae15c9713054?s=128

Yoon Sup Choi

August 27, 2019
Tweet

Transcript

  1. 디지털 헬스케어 파트너스 대표파트너 최윤섭, PhD 한국에서 혁신적인 디지털 헬스케어

    스타트업이 탄생하려면
  2. Digital Healthcare Partners (DHP) 는 국내 유일의 디지털 헬스케어 전문

    스타트업 엑셀러레이터입니다. 글로벌 한국 일반 의료/ 헬스케어
  3. DHP의 목적 및 존재 이유 혁신적 헬스케어 스타트업 헬스케어 생태계

    구축 의학적, 사회적 가치의 창출
  4. DHP는 디지털 헬스케어 전문 엑셀러레이터로서, 
 디지털 헬스케어/의료 스타트업을 발굴,

    육성, 연결하고 투자합니다. 발굴 • 세상을 바꿀 수 있는 혁신적인 헬스케어 스타트업 및 예비 창업팀을 발굴합니다. • 발굴을 위해 DHP Office Hour, 해커톤, 자체 행사 개최 등의 다방면의 채널을 활용합니다. 육성 • 의료/헬스케어 전문가들로 이루어진 파트너 및 자문가들이 초기 스타트업을 멘토링합니다. • 사업 개발, 아이템 검증, 임상 연구, 인허가 관련 자문 등 전방위적으로 지원합니다. 투자 • 초기 스타트업 및 예비 창업팀에게 정해진 원칙에 따라 지분 투자를 집행합니다. • 스타트업을 성장시켜 지분 가치의 상승에 따라서 재무적 수익을 추구합니다. 연결 • 초기 스타트업을 병원, 규제기관, 보험사, VC, 대학 등 다양한 이해관계자들과 연결합니다. • 파트너와 자문가들의 네트워크를 적극 활용하여 스타트업을 의료계 이너서클로 끌어들입니다.
  5. 윤상철 MD 안과전문의 연세의료원 안과 교수 전) 에티오피아 국제협력의사 김우성

    MD, MBA 소아청소년과 전문의 방배GF소아과 원장 카톨릭대학교 의료경영학 겸임교수 김현정 MD, PhD 피부과 전문의 차의과대학 피부과 교수 전)서울의료원 피부과 과장 김태호 MD 내분비내과 전문의 서울의료원 내분비내과 과장 전)명지병원 IT융합연구소 부소장 유규하 PhD 규제/인허가 전문가 성균관대 의료기기산업학과 교수 전)식약처 의료기기심사부장 신수용 PhD 의료-IT / 기계학습 전문가 성균관대학교 디지털헬스학과 교수 전)서울아산병원 의생명정보학과 교수 장진규 PhD HCI / UX 아키텍처 전문가 연세대학교 인지과학연구소 교수 전) 융합기술원 컴패노이드랩스 허정윤 UX 전문가 국민대 자동차운송디자인학과 교수 국민대 디자인융합창조센터 소장 구태언 변호사 테크앤로 법률사무소 대표파트너 전)김앤장법률사무소 김신호 회계사 정현회계법인 이사 전)삼일회계법인 백승재 MD,PhD 이비인후과 전문의 전) 다국적제약사 의학부 상무 전)연세대학교 의과대학 교수 정지훈 MD, MPH, PhD IT융합전문가/미래학자/의사 빅뱅엔젤스 파트너 전) 명지병원 IT융합연구소장 김치원 MD, MPH 디지털 헬스케어 전문가/내과전문의 서울와이즈요양병원장 전) 맥킨지 서울사무소 컨설턴트 DHP는 초기 헬스케어 스타트업에 직접적으로 도움을 드릴 수 있는 의료, 규제, 디자인 전문가들이 파트너로 참여하고 있습니다. 신재원 MD 가정의학과 전문의 에임메드 대표이사 전)모바일닥터 대표이사 명유진 MD 성형외과 전문의 아주대병원 성형외과 교수 전)분당서울대병원 성형외과 교수 주세경, PhD 의공학 전문가 서울아산병원 의공학과 부교수 울산의대 의공학교실 주임교수 정재호 임팩트 투자자 전) 카이스트청년창투 이사 전) SK텔레콤 신사업추진단 김준환 MD 내과 전문의 입원의학전문가 서울아산병원 내과 교수
  6. 의료 헬스케어 및 스타트업 •내분비내과 •신장내과 •종양내과 •소아청소년과 •안과 •피부과

    •가정의학과 •성형외과 •이비인후과 •규제/인허가 •의료정보학 •의공학 •인공지능 •UI/UX •HCI •법률/지재권 •회계/재무 •국제보건 •벤처캐피털 DHP 는 다양한 의료/헬스케어 분야 및 스타트업 전문가들이 초기 헬스케어 스타트업에 직접적으로 도움을 드립니다. DHP 파트너 기준
  7. DHP 는 다양한 의료/헬스케어 분야 및 스타트업 전문가들이 초기 헬스케어

    스타트업에 직접적으로 도움을 드립니다. 의료 헬스케어 및 스타트업 •내분비내과 •신장내과 •종양내과 •소아청소년과 •안과 •피부과 •가정의학과 •성형외과 •이비인후과 •규제/인허가 •의료정보학 •의공학 •인공지능 •UI/UX •HCI •법률/지재권 •회계/재무 •국제보건 •벤처캐피털 •병원 경영 •소화기 내과 •순환기내과 •정신건강의학과 •진단검사의학과 •응급의학과 •마취통증의학과 •비뇨기과 •산부인과 •외과 •치의학과 DHP 파트너+자문가 기준
  8. 유전체/진단 당뇨/커머스 VR/수술 블록체인/데이터 VR/교육 의사추천/O2O 웰니스/챗봇 감염관리/HW 병원/챗봇 탈모/O2O

    TBA TBA 간병인/O2O 정신건강/명상 DHP의 포트폴리오
  9. 한국에서 의료/헬스케어 스타트업에 초기 투자 1 2 3 4 5

    5중고
  10. None
  11. 의료가 맞이하는, 피할 수 없는 근본적 변화

  12. 헬스케어 넓은 의미의 건강 관리에는 해당되지만, 디지털 기술이 적용되지 않고,

    전문 의료 영역도 아닌 것 예) 운동, 영양, 수면 디지털 헬스케어 건강 관리 중에 디지털 기술이 사용되는 것 예) 사물인터넷, 인공지능, 3D 프린터, VR/AR 모바일 헬스케어 디지털 헬스케어 중 모바일 기술이 사용되는 것 예) 스마트폰, 사물인터넷, SNS 개인 유전정보분석 암유전체, 질병위험도, 보인자, 약물 민감도 예) 웰니스, 조상 분석 헬스케어 관련 분야 구성도(ver 0.6) 의료 질병 예방, 치료, 처방, 관리 등 전문 의료 영역 원격의료 원격 환자 모니터링 원격진료 전화, 화상, 판독 디지털 치료제 당뇨 예방 앱 중독 치료 앱 ADHD 치료게임
  13. EDITORIAL OPEN Digital medicine, on its way to being just

    plain medicine npj Digital Medicine (2018)1:20175 ; doi:10.1038/ s41746-017-0005-1 There are already nearly 30,000 peer-reviewed English-language scientific journals, producing an estimated 2.5 million articles a year.1 So why another, and why one focused specifically on digital medicine? To answer that question, we need to begin by defining what “digital medicine” means: using digital tools to upgrade the practice of medicine to one that is high-definition and far more individualized. It encompasses our ability to digitize human beings using biosensors that track our complex physiologic systems, but also the means to process the vast data generated via algorithms, cloud computing, and artificial intelligence. It has the potential to democratize medicine, with smartphones as the hub, enabling each individual to generate their own real world data and being far more engaged with their health. Add to this new imaging tools, mobile device laboratory capabilities, end-to-end digital clinical trials, telemedicine, and one can see there is a remarkable array of transformative technology which lays the groundwork for a new form of healthcare. As is obvious by its definition, the far-reaching scope of digital medicine straddles many and widely varied expertise. Computer scientists, healthcare providers, engineers, behavioral scientists, ethicists, clinical researchers, and epidemiologists are just some of the backgrounds necessary to move the field forward. But to truly accelerate the development of digital medicine solutions in health requires the collaborative and thoughtful interaction between individuals from several, if not most of these specialties. That is the primary goal of npj Digital Medicine: to serve as a cross-cutting resource for everyone interested in this area, fostering collabora- tions and accelerating its advancement. Current systems of healthcare face multiple insurmountable challenges. Patients are not receiving the kind of care they want and need, caregivers are dissatisfied with their role, and in most countries, especially the United States, the cost of care is unsustainable. We are confident that the development of new systems of care that take full advantage of the many capabilities that digital innovations bring can address all of these major issues. Researchers too, can take advantage of these leading-edge technologies as they enable clinical research to break free of the confines of the academic medical center and be brought into the real world of participants’ lives. The continuous capture of multiple interconnected streams of data will allow for a much deeper refinement of our understanding and definition of most pheno- types, with the discovery of novel signals in these enormous data sets made possible only through the use of machine learning. Our enthusiasm for the future of digital medicine is tempered by the recognition that presently too much of the publicized work in this field is characterized by irrational exuberance and excessive hype. Many technologies have yet to be formally studied in a clinical setting, and for those that have, too many began and ended with an under-powered pilot program. In addition, there are more than a few examples of digital “snake oil” with substantial uptake prior to their eventual discrediting.2 Both of these practices are barriers to advancing the field of digital medicine. Our vision for npj Digital Medicine is to provide a reliable, evidence-based forum for all clinicians, researchers, and even patients, curious about how digital technologies can transform every aspect of health management and care. Being open source, as all medical research should be, allows for the broadest possible dissemination, which we will strongly encourage, including through advocating for the publication of preprints And finally, quite paradoxically, we hope that npj Digital Medicine is so successful that in the coming years there will no longer be a need for this journal, or any journal specifically focused on digital medicine. Because if we are able to meet our primary goal of accelerating the advancement of digital medicine, then soon, we will just be calling it medicine. And there are already several excellent journals for that. ACKNOWLEDGEMENTS Supported by the National Institutes of Health (NIH)/National Center for Advancing Translational Sciences grant UL1TR001114 and a grant from the Qualcomm Foundation. ADDITIONAL INFORMATION Competing interests:The authors declare no competing financial interests. Publisher's note:Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Change history:The original version of this Article had an incorrect Article number of 5 and an incorrect Publication year of 2017. These errors have now been corrected in the PDF and HTML versions of the Article. Steven R. Steinhubl1 and Eric J. Topol1 1Scripps Translational Science Institute, 3344 North Torrey Pines Court, Suite 300, La Jolla, CA 92037, USA Correspondence: Steven R. Steinhubl (steinhub@scripps.edu) or Eric J. Topol (etopol@scripps.edu) REFERENCES 1. Ware, M. & Mabe, M. The STM report: an overview of scientific and scholarly journal publishing 2015 [updated March]. http://digitalcommons.unl.edu/scholcom/92017 (2015). 2. Plante, T. B., Urrea, B. & MacFarlane, Z. T. et al. Validation of the instant blood pressure smartphone App. JAMA Intern. Med. 176, 700–702 (2016). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons. org/licenses/by/4.0/. © The Author(s) 2018 Received: 19 October 2017 Accepted: 25 October 2017 www.nature.com/npjdigitalmed Published in partnership with the Scripps Translational Science Institute 디지털 의료의 미래는? 일상적인 의료가 되는 것
  14. Digital Healthcare Industry Landscape Data Measurement Data Integration Data Interpretation

    Treatment Smartphone Gadget/Apps DNA Artificial Intelligence 2nd Opinion Wearables / IoT EMR/EHR 3D Printer Counseling Data Platform Accelerator/early-VC Telemedicine Device On Demand (O2O) VR
  15. None
  16. https://rockhealth.com/reports/2018-year-end-funding-report-is-digital-health-in-a-bubble/ •2018년에는 $8.1B 가 투자되며 역대 최대 규모를 또 한

    번 갱신 (전년 대비 42.% 증가) •총 368개의 딜 (전년 359 대비 소폭 증가): 개별 딜의 규모가 커졌음 •전체 딜의 절반이 seed 혹은 series A 투자였음 •‘초기 기업들이 역대 최고로 큰 규모의 투자를’, ‘역대 가장 자주’ 받고 있음
  17. 2010 2011 2012 2013 2014 2015 2016 2017 2018 Q1

    Q2 Q3 Q4 153 283 476 647 608 568 684 851 765 FUNDING SNAPSHOT: YEAR OVER YEAR 5 Deal Count $1.4B $1.7B $1.7B $627M $603M $459M $8.2B $6.2B $7.1B $2.9B $2.3B $2.0B $1.2B $11.7B $2.3B Funding surpassed 2017 numbers by almost $3B, making 2018 the fourth consecutive increase in capital investment and largest since we began tracking digital health funding in 2010. Deal volume decreased from Q3 to Q4, but deal sizes spiked, with $3B invested in Q4 alone. Average deal size in 2018 was $21M, a $6M increase from 2017. $3.0B $14.6B DEALS & FUNDING INVESTORS SEGMENT DETAIL Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data through 12/31/18 on seed (incl. accelerator), venture, corporate venture, and private equity funding only. © 2019 StartUp Health LLC •글로벌 투자 추이를 보더라도, 2018년 역대 최대 규모: $14.6B •2015년 이후 4년 연속 증가 중 https://hq.startuphealth.com/posts/startup-healths-2018-insights-funding-report-a-record-year-for-digital-health
  18. startuphealth.com/reports Firm 2017 YTD Deals Stage Early Mid Late 1

    7 1 7 2 6 2 6 3 5 3 5 3 5 3 5 THE TOP INVESTORS OF 2017 YTD We are seeing huge strides in new investors pouring money into the digital health market, however all the top 10 investors of 2017 year to date are either maintaining or increasing their investment activity. Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC DEALS & FUNDING GEOGRAPHY INVESTORS MOONSHOTS 20 •Google Ventures와 Khosla Ventures가 각각 7개로 공동 1위, •GE Ventures와 Accel Partners가 6건으로 공동 2위를 기록
 •GV 가 투자한 기업 •virtual fitness membership network를 만드는 뉴욕의 ClassPass •Remote clinical trial 회사인 Science 37 •Digital specialty prescribing platform ZappRx 등에 투자.
 •Khosla Ventures 가 투자한 기업 •single-molecule 검사 장비를 만드는 TwoPoreGuys •Mabu라는 AI-powered patient engagement robot 을 만드는 Catalia Health에 투자.
  19. •최근 3년 동안 Merck, J&J, GSK 등의 제약사들의 디지털 헬스케어

    분야 투자 급증 •2015-2016년 총 22건의 deal (=2010-2014년의 5년간 투자 건수와 동일) •Merck 가 가장 활발: 2009년부터 Global Health Innovation Fund 를 통해 24건 투자 ($5-7M) •GSK 의 경우 2014년부터 6건 (via VC arm, SR One): including Propeller Health
  20. 한국은?

  21. 27 Switzerland EUROPE $3.2B $1.96B $1B $3.5B NORTH AMERICA $12B

    Valuation $1.8B $3.1B $3.2B $1B $1B 38 healthcare unicorns valued at $90.7B Global VC-backed digital health companies with a private market valuation of $1B+ (7/26/19) UNITED KINGDOM $1.5B MIDDLE EAST $1B Valuation ISRAEL $7B $1B $1.2B $1B $1.65B $1.8B $1.25B $2.8B $1B $1B $2B Valuation $1.5B UNITED STATES GERMANY $1.7B $2.5B CHINA ASIA $3B $5.5B Valuation $5B $2.4B $2.4B France $1.1B $3.5B $1.6B $1B $1B $1B $1B CB Insights, Global Healthcare Reports 2019 2Q
  22. 혁신적인 디지털 헬스케어 스타트업, 무엇이 필요한가?

  23. 혁신적인 디지털 헬스케어 스타트업, 무엇이 필요한가? = 헬스케어 스타트업, 왜

    그렇게 어려운가?
  24. 일반 스타트업 벤처 캐피털 대기업 정부 일반 스타트업 생태계와는 달리,

    헬스케어 스타트업의 생태계는 수많은 이해관계자들이 존재합니다
  25. 헬스케어 스타트업 벤처 캐피털 보험사 대기업 정부 규제기관 환자 병원

    심평원 일반 스타트업 생태계와는 달리, 헬스케어 스타트업의 생태계는 수많은 이해관계자들이 존재합니다
  26. 니즈가 있는 것을 만들어야 한다. 예쁜 쓰레기 말고.

  27. 글로벌 헬스케어 시장은 큰 시장인가?

  28. 글로벌 헬스케어 시장은 큰 시장인가? YES and NO.

  29. YES and NO. 글로벌 헬스케어 시장은 큰 시장인가?

  30. 글로벌 헬스케어 시장의 총 합은 크다. 12조 달러. (1경 3046조원)

  31. 하지만, 헬스케어 시장은 극도로 세분화된 작은 시장의 총합으로 구성되어 있다.

  32. 모든 세부 시장의 니즈를 충족시키는 것은 불가능하다.

  33. 헬스케어 시장은 매우 세분화되어 있고 시장마다 니즈와 지불의사도 다르다. •

    건강인 / 환자 • 20대 / 30대 / 40대 / 50대 / 60대 / 70대 / 80대 • 남성 / 여성 • 저체중 / 정상 / 과체중 • 가족력 • 건강에 대한 관심 • 지불 능력 • 디지털 리터러시
  34. •Divide and Conquer: 한 번에 하나씩 공략 하는 수밖에. •그렇다면

    어떤 고객을 골라야하나? •가장 절박한 니즈를 가진 고객 세그먼트 •우리가 실제로 해결책을 제시할 수 있는 고객 세그먼트 •돈을 낼 수 있는 고객 세그먼트 그러면 어떻게 해야 하는가?
  35. 얼마나 필요해야 할까?

  36. 비타민, 진통제, 그리고…

  37. 헬스케어 마켓 패러독스 건강인 중증질환 급성질환 지불의사 높음 지불의사 낮음

    대상 고객 많음 대상 고객 적음 중증도
  38. 예시?

  39. 의사, “EMR을 좀 더 간편하게 입력하고 싶다”

  40. Fig. 3 The patient record shows a woman with metastatic

    breast cancer with malignant pleural effusions and empyema. The patient timeline at the top of the figure contains circles for every time-step for which at least a single token exists for the patient, and the horizontal lines show the data type. There is a close-up view of the most recent data points immediately preceding a prediction made 24 h after admission. We trained models for each data type and highlighted in red the tokens which the models attended to—the non-highlighted text was not attended to but is shown for context. The models pick up features in the medications, nursing flowsheets, and clinical notes relevant to the prediction Scalable and accurate deep learning with electronic health A Rajkomar et al. 6 미국 병원, “환자의 재입원율을 예측해서 패널티를 줄이고 싶다”
  41. 환자, “3주를 기다리는 대신, 의사를 바로 만나고 싶다”

  42. • New York • First-time home visit $50; regular visits

    $200; physical $100 환자, “의사가 집으로 오면 좋겠다” 주정부, “응급실 방문 비용 줄이고 싶다”
  43. 간호사, “입원 환자의 욕창을 쉽게 방지하고 싶다”

  44. 부모, “아이가 발작을 일으키는 즉시 알고 싶다”

  45. 발기부전제 집에서 처방받고, 받아보고 싶다.

  46. 환자, “내가 앓는 희귀질환이 뭔지 병명이라도 알고 싶다”

  47. 안과의사, “전공의 때 못다한 백내장 수술 연습을 하고 싶다”

  48. 부모, “새벽 3시 아기가 열날 때 조언을 받고 싶다”

  49. 환자, “가슴 확대 수술 잘하는 성형외과 의사를 찾고 싶다” 성형외과

    개원의, “내 전문 시술 분야를 환자에게 알리고 싶다”
  50. 간호사, “사용한 주사기를 안전하게 폐기하고 싶다”

  51. 니즈와 지불의사가 있으면 팔 수 있는가? 그렇다. 헬스케어 분야가 아니라면.

  52. 기업 고객 구매 지불 결정자, 사용자, 지불자

  53. 환자 의사 보험료 청구 보험 지불 진료 지불 보험금 결정자,

    사용자, 지불자
  54. 환자 의사 보험료 청구 보험 지불 진료 지불 보험금 결정자,

    사용자, 지불자 누가 결정하는가? •"부당 청구 아닌가?” •“가격을 얼마로 할까?”
  55. •돈을 내고 사고 싶지만, 살 수가 없다. •정말 필요하다는 고객이

    있지만, 팔 수가 없다. •팔 수 있기는 하지만, 원가를 보전해주지 않는다. (한국) 의료 산업의 아이러니
  56. 돈을 낼 것인가? 낼 수는 있는가? 사용자 지불자 + +

    결정자 (환자 본인, 건보, 사보험, 보호자, 부모) (환자 본인, 의사, 심평원, 사보험, 보호자, 부모, 구매팀)
  57. 근거를 만들어야 한다. 데이터, 데이터, 데이터!

  58. 새로운 것을 주장하려면 근거가 있어야 한다.

  59. 앱만 쓰면 살이 빠진다고?

  60. Weight loss efficacy of a novel mobile Diabetes Prevention Program

    delivery platform with human coaching Andreas Michaelides, Christine Raby, Meghan Wood, Kit Farr, Tatiana Toro-Ramos To cite: Michaelides A, Raby C, Wood M, et al. Weight loss efficacy of a novel mobile Diabetes Prevention Program delivery platform with human coaching. BMJ Open Diabetes Research and Care 2016;4:e000264. doi:10.1136/bmjdrc-2016- 000264 Received 4 May 2016 Revised 19 July 2016 Accepted 11 August 2016 Noom, Inc., New York, New York, USA Correspondence to Dr Andreas Michaelides; andreas@noom.com ABSTRACT Objective: To evaluate the weight loss efficacy of a novel mobile platform delivering the Diabetes Prevention Program. Research Design and Methods: 43 overweight or obese adult participants with a diagnosis of prediabetes signed-up to receive a 24-week virtual Diabetes Prevention Program with human coaching, through a mobile platform. Weight loss and engagement were the main outcomes, evaluated by repeated measures analysis of variance, backward regression, and mediation regression. Results: Weight loss at 16 and 24 weeks was significant, with 56% of starters and 64% of completers losing over 5% body weight. Mean weight loss at 24 weeks was 6.58% in starters and 7.5% in completers. Participants were highly engaged, with 84% of the sample completing 9 lessons or more. In-app actions related to self-monitoring significantly predicted weight loss. Conclusions: Our findings support the effectiveness of a uniquely mobile prediabetes intervention, producing weight loss comparable to studies with high engagement, with potential for scalable population health management. INTRODUCTION Lifestyle interventions,1 including the National Diabetes Prevention Program (NDPP) have proven effective in preventing type 2 diabetes.2 3 Online delivery of an adapted NDPP has resulted in high levels of engagement, weight loss, and improvements in glycated hemoglobin (HbA1c).4 5 Prechronic and chronic care efforts delivered by other means (text and emails,6 nurse support,7 DVDs,8 community care9) have also been successful in promoting behavior change, weight loss, and glycemic control. One study10 adapted the NDPP to deliver the first part of the curriculum in-person and the remaining sessions through a mobile app, and found 6.8% weight loss at 5 months. Mobile health poses a promising means of delivering prechronic and chronic care,11 12 and provides a scalable, convenient, and accessible method to deliver the NDPP. The weight loss efficacy of a completely mobile delivery of a structured NDPP has not been tested. The main aim of this pilot study was to evaluate the weight loss efficacy of Noom’s smartphone-based NDPP-based cur- ricula with human coaching in a group of overweight and obese hyperglycemic adults receiving 16 weeks of core, plus postcore cur- riculum. In this study, it was hypothesized that the mobile DPP could produce trans- formative weight loss over time. RESEARCH DESIGN AND METHODS A large Northeast-based insurance company offered its employees free access to Noom Health, a mobile-based application that deli- vers structured curricula with human coaches. An email or regular mail invitation with information describing the study was sent to potential participants based on an elevated HbA1c status found in their medical records, reflecting a diagnosis of prediabetes. Interested participants were assigned to a virtual Centers for Disease Control and Prevention (CDC)-recognized NDPP master’s level coach. Key messages ▪ To the best of our knowledge, this study is the first fully mobile translation of the Diabetes Prevention Program. ▪ A National Diabetes Prevention Program (NDPP) intervention delivered entirely through a smart- phone platform showed high engagement and 6-month transformative weight loss, comparable to the original NDPP and comparable to trad- itional in-person programmes. ▪ This pilot shows that a novel mobile NDPP inter- vention has the potential for scalability, and can address the major barriers facing the widespread translation of the NDPP into the community setting, such as a high fixed overhead, fixed locations, and lower levels of engagement and weight loss. BMJ Open Diabetes Research and Care 2016;4:e000264. doi:10.1136/bmjdrc-2016-000264 1 Open Access Research group.bmj.com on April 27, 2017 - Published by http://drc.bmj.com/ Downloaded from •Noom Coach 앱이 체중 감량을 위해서 효과적임을 증명 •완전히 모바일로 이뤄진 최초의 당뇨병 예방 연구 •43명의 전당뇨단계에 있는 과체중이나 비만 환자를 대상 •24주간 Noom Coach의 앱과 모바일 코칭을 제공 •그 결과 64% 의 참가자들이 5-7% 의 체중 감량 효과 •84%에 달하는 사람들이 마지막까지 이 6개월 간의 프로그램에 참여
  61. www.nature.com/scientificreports Successful weight reduction and maintenance by using a smartphone

    application in those with overweight and obesity Sang Ouk Chin1,*, Changwon Keum2,*, Junghoon Woo3, Jehwan Park2, Hyung Jin Choi4, Jeong-taek Woo5 & Sang Youl Rhee5 A discrepancy exists with regard to the effect of smartphone applications (apps) on weight reduction due to the several limitations of previous studies. This is a retrospective cohort study, aimed to investigate the effectiveness of a smartphone app on weight reduction in obese or overweight individuals, based on the complete enumeration study that utilized the clinical and logging data entered by Noom Coach app users between October 2012 and April 2014. A total of 35,921 participants were included in the analysis, of whom 77.9% reported a decrease in body weight while they were using the app (median 267 days; interquartile range = 182). Dinner input frequency was the most important factor for successful weight loss (OR = 10.69; 95% CI = 6.20–19.53; p < 0.001), and more frequent input of weight significantly decreased the possibility of experiencing the yo-yo effect (OR = 0.59, 95% CI = 0.39–0.89; p < 0.001). This study demonstrated the clinical utility of an app for successful weight reduction in the majority of the app users; the effects were more significant for individuals who monitored their weight and diet more frequently. Obesity is a global epidemic with a rapidly increasing prevalence worldwide1,2. As obese individuals experience significantly higher mortality when compared with the non-obese population3,4, this phenomenon poses a sig- nificant socioeconomic burden, necessitating strategies to manage overweight and prevent obesity5. Although numerous interventions such as life style modification including exercise6–10, and pharmacotherapy11–13 have been shown effective for both the prevention and treatment of obesity, some of these methods were found to have a limitation which required substantial financial inputs and repeated time-consuming processes14,15. Recently, as the number of smartphone users is increasing dramatically, many investigators have attempted to implement smartphone applications (app) for health promotion16–19. Consequently, many smartphone apps have demonstrated at least partial efficacy in promoting successful weight reduction according to the number of previous studies20–24. However, due to the limitations associated with study design such as small-scale studies and short investigation periods, a discrepancy exists with regard to the effect of apps on weight reduction20,21,23. Even systemic reviews which investigated the efficacy of mobile apps for weight reduction reported more or less inconsistent results; Flores Mateo et al. reported a significant weight loss by mobile phone app intervention when compared with control groups25 whereas Semper et al. reported that four of the six studies included in the analysis showed no significant difference of weight reduction between comparison groups26. Thus, the aim of this study was to investigate the effectiveness of a smartphone app on weight reduction in obese or overweight individuals Recei e : 0 pri 016 Accepte : 15 eptem er 016 Pu is e : 0 o em er 016 OPEN •스마트폰 앱이 체중 감량에 도움을 줄 수 있는가? •2012년부터 2014년 까지 최소 6개월 이상 애플리케이션을 사용 •80여 국가(미국, 독일, 한국, 영국, 일본 등)에서 모집된 35,921명의 데이터 •애플리케이션 평균 사용기간은 267일 Chin et al. Sci Rep 2016
  62. www.nature.com/scientificreports/ Figure 1. Distribution of weight loss among app users.

    Percentages (and 95% CIs) of participants achieving < 5%, 5–10%, 10–15%, 15–20% and > 20% weight loss relative to baseline at the end of the 6-month trial period. Data are reported as the mean ± SD. Univariate Linear Regression p-value Multivariate Linear Regression p-value β (95% CI) β (95% CI) Gender (male) 0.60 (0.54, 0.66) < 0.001 0.71 (0.65, 0.77) < 0.001 Age 0.01 (0.008, 0.013) < 0.001 − 0.026 (− 0.03, − 0.02) < 0.001 Follow-up Days − 0.001 (− 0.001, − 0.001) < 0.001 0.00 (0.00, 0.00) 0.886 Baseline BMI 0.146 (0.143, 0.150) < 0.001 0.165 (0.161, 0.168) < 0.001 Successful weight reduction
 and maintenance by using a smartphone application in those with overweight and obesity Chin et al. Sci Rep 2016 •대상자의 약 77.9%에서 성공적인 체중감량 효과를 확인 •이 중 23%는 본인 체중의 10% 이상 감량에 성공 •앱의 사용이 약물 치료 등 다른 비만 관리 기법에 비해 체중 감량 효과가 뒤쳐지지 않음
  63. 앱을 쓰면 혈당 관리가 된다고?

  64. 1 SCIENTIFIC REPORTS | (2018) 8:3642 | DOI:10.1038/s41598-018-22034-0 www.nature.com/scientificreports The

    effectiveness, reproducibility, and durability of tailored mobile coaching on diabetes management in policyholders: A randomized, controlled, open-label study Da Young Lee1,2, Jeongwoon Park3, Dooah Choi3, Hong-Yup Ahn4, Sung-Woo Park1 & Cheol-Young Park 1 This randomized, controlled, open-label study conducted in Kangbuk Samsung Hospital evaluated the effectiveness, reproducibility, and durability of tailored mobile coaching (TMC) on diabetes management. The participants included 148 Korean adult policyholders with type 2 diabetes divided into the Intervention-Maintenance (I-M) group (n = 74) and Control-Intervention (C-I) group (n = 74). Intervention was the addition of TMC to typical diabetes care. In the 6-month phase 1, the I-M group received TMC, and the C-I group received their usual diabetes care. During the second 6-month phase 2, the C-I group received TMC, and the I-M group received only regular information messages. After the 6-month phase 1, a significant decrease (0.6%) in HbA1c levels compared with baseline values was observed in only the I-M group (from 8.1 ± 1.4% to 7.5 ± 1.1%, P < 0.001 based on a paired t-test). At the end of phase 2, HbA1c levels in the C-I group decreased by 0.6% compared with the value at 6 months (from 7.9 ± 1.5 to 7.3 ± 1.0, P < 0.001 based on a paired t-test). In the I-M group, no changes were observed. Both groups showed significant improvements in frequency of blood-glucose testing and exercise. In conclusion, addition of TMC to conventional treatment for diabetes improved glycemic control, and this effect was maintained without individualized message feedback. The incidence and prevalence of type 2 diabetes are increasing rapidly worldwide, and the disease is expected to affect 439 million adults by 20301. Previous large clinical trials indicated that adequate glycemic control con- tributed to a reduction in both microvascular and macrovascular complications as well as mortality rates due to diabetes2,3. Complications from diabetes result in greater expenditure and reduced productivity. Therefore, it is a socioeconomic concern4,5. Adequate glycemic control is important not only as an individual health problem, but also as a challenge to healthcare systems worldwide. However, approximately 40% of subjects with diabetes in the United States do not meet the recommended target for glycemic control, low-density lipoprotein cholesterol (LDL-C) level, or blood pressure (BP)6. In Korea, glycated hemoglobin (HbA1c) levels for nearly half of diabetic patients were above 7.0%7. Although successful diabetes care requires therapeutic lifestyle modification in addition to proper medica- tion8–10, only 55% of individuals with type 2 diabetes receive diabetes education from healthcare professionals11, and 16% report adhering to recommended self-management activities9. Multifaceted professional inter- ventions are needed to support patient efforts for behavior change including healthy lifestyle choices, disease self-management, and prevention of diabetes complications10. 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea. 3Huraypositive Inc. Sinsa-dong, Gangnam-gu, Seoul, Republic of Korea. 4Department of Statistics, Dongguk University-Seoul, Seoul, Republic of Korea. Correspondence and requests for materials should be addressed to C.-Y.P. (email: cydoctor@ chol.com) Received: 29 November 2017 Accepted: 15 February 2018 Published: xx xx xxxx OPEN e.com/scientificreports/ Figure 3. Changes in means and standard errors of glycated hemoglobin (H study period. HbA1c levels of the C-I group who received TMC during phase 2 of the study decreased by 0.6% compared to phase 1 levels. In the I-M group, initial improvement in HbA1c levels at 3 months continued until 12 months. Consequently, HbA1c levels in both the C-I and I-M groups decreased significantly compared to baseline values over the 12-month study period.
  65. 게임을 하면 ADHD가 치료된다고?

  66. LETTER doi:10.1038/nature12486 Video game training enhances cognitive control in older

    adults J. A. Anguera1,2,3, J. Boccanfuso1,3, J. L. Rintoul1,3, O. Al-Hashimi1,2,3, F. Faraji1,3, J. Janowich1,3, E. Kong1,3, Y. Larraburo1,3, C. Rolle1,3, E. Johnston1 & A. Gazzaley1,2,3,4 Cognitivecontrolisdefinedbyasetofneuralprocessesthatallowusto interact with our complex environment in a goal-directed manner1. Humans regularly challenge these control processes when attempting to simultaneously accomplish multiple goals (multitasking), generat- ing interference as the result of fundamental information processing limitations2. It is clear that multitasking behaviour has become ubi- quitous in today’s technologically dense world3, and substantial evid- ence has accrued regarding multitasking difficulties and cognitive control deficits in our ageing population4. Here we show that multi- tasking performance, as assessed with a custom-designed three- dimensional video game (NeuroRacer), exhibits a linear age-related decline from 20 to 79 years of age. By playing an adaptive version of NeuroRacer in multitasking training mode, older adults (60 to 85 years old) reduced multitasking costs compared to both an active control group and a no-contact control group, attaining levels beyond those achieved by untrained 20-year-old participants, with gains persisting for 6 months. Furthermore, age-related deficits in neural signatures of cognitive control, as measured with electroencephalo- graphy,wereremediated by multitasking training (enhanced midline frontal theta power and frontal–posterior theta coherence). Critically, thistrainingresultedinperformancebenefitsthatextendedtountrained cognitive control abilities (enhanced sustained attention and working memory), with an increase in midline frontal theta power predicting the training-induced boost in sustained attention and preservation of multitasking improvement 6 months later. These findings high- light the robust plasticity of the prefrontal cognitive control system in the ageing brain, and provide the first evidence, to our knowledge, ofhowacustom-designedvideogamecanbeusedtoassesscognitive abilities across the lifespan, evaluate underlying neural mechanisms, and serve as a powerful tool for cognitive enhancement. In a first experiment, we evaluated multitasking performance across the adult lifespan. A total of 174 participants spanning six decades of life (ages 20–79; ,30 individuals per decade) played a diagnostic version of NeuroRacertomeasuretheirperceptualdiscriminationability(‘signtask’) withandwithoutaconcurrentvisuomotortrackingtask(‘drivingtask’;see Supplementary Information for details of NeuroRacer). Performance was evaluated using two distinct game conditions: ‘sign only’ (respond as rapidly as possible to the appearance of a sign only when a green circle was present); and ‘sign and drive’ (simultaneously perform the sign task while maintaining a car in the centre of a winding road using a joystick (that is, ‘drive’; see Fig. 1a)). Perceptual discrimination performance was evaluatedusingthesignaldetectionmetricofdiscriminability(d9).A‘cost’ index was used to assess multitasking performance by calculating the percentage change in d9 from ‘sign only’ to ‘sign and drive’, such that greater cost (that is, a more negative percentage cost) indicates increased interference when simultaneously engaging in the two tasks (see Methods Summary). Prior to the assessment of multitasking costs, an adaptive staircase algorithm was used to determine the difficulty levels of the game at which each participant performed the perceptual discrimination and visuomotor tracking tasks in isolation at ,80% accuracy. These levels were then used to set the parameters of the component tasks in the multitasking condition, so that each individual played the game at a customizedchallengelevel.Thisensuredthatcomparisonswouldinform differences in the ability to multitask, and not merely reflect disparities in component skills (see Methods, Supplementary Figs 1 and 2, and Sup- plementary Information for more details). Multitasking performance diminished significantly across the adult lifespan in a linear fashion (that is, increasing cost, see Fig. 2a and Sup- plementaryTable1),withtheonlysignificantdifferenceincostbetween adjacent decades being the increase from the twenties (226.7% cost) to the thirties (238.6% cost). This deterioration in multitasking perform- ance is consistent with the pattern of performance decline across the lifespan observed for fluid cognitive abilities, such as reasoning5 and working memory6. Thus, using NeuroRacer as a performance assess- ment tool, we replicated previously evidenced age-related multitasking deficits7,8, and revealed that multitasking performance declines linearly as we advance in age beyond our twenties. In a second experiment, we explored whether older adults who trained by playing NeuroRacer in multitasking mode would exhibit improve- mentsintheirmultitaskingperformanceonthegame9,10 (thatis,diminished NeuroRacer costs). Critically, we also assessed whether this training 1Department of Neurology, University of California, San Francisco, California 94158, USA. 2 Department of Physiology, University of California, San Francisco, California 94158, USA. 3 Center for Integrative Neuroscience, University of California, San Francisco, California 94158, USA. 4Department of Psychiatry, University of California, San Francisco, California 94158, USA. 1 month Multitasking Single task No-contact control Initial visit NeuroRacer EEG and cognitive testing Drive only Sign only Sign and drive and 1 hour × 3 times per week × 1 month or Single task Multitask 6+ months Training intervention NeuroRacer or a b + + Figure 1 | NeuroRacer experimental conditions and training design. a, Screen shot captured during each experimental condition. b, Visualization of training design and measures collected at each time point. 5 S E P T E M B E R 2 0 1 3 | V O L 5 0 1 | N A T U R E | 9 7 Macmillan Publishers Limited. All rights reserved ©2013
  67. OPEN ORIGINAL ARTICLE Characterizing cognitive control abilities in children with

    16p11.2 deletion using adaptive ‘video game’ technology: a pilot study JA Anguera1,2, AN Brandes-Aitken1, CE Rolle1, SN Skinner1, SS Desai1, JD Bower3, WE Martucci3, WK Chung4, EH Sherr1,5 and EJ Marco1,2,5 Assessing cognitive abilities in children is challenging for two primary reasons: lack of testing engagement can lead to low testing sensitivity and inherent performance variability. Here we sought to explore whether an engaging, adaptive digital cognitive platform built to look and feel like a video game would reliably measure attention-based abilities in children with and without neurodevelopmental disabilities related to a known genetic condition, 16p11.2 deletion. We assessed 20 children with 16p11.2 deletion, a genetic variation implicated in attention deficit/hyperactivity disorder and autism, as well as 16 siblings without the deletion and 75 neurotypical age-matched children. Deletion carriers showed significantly slower response times and greater response variability when compared with all non-carriers; by comparison, traditional non-adaptive selective attention assessments were unable to discriminate group differences. This phenotypic characterization highlights the potential power of administering tools that integrate adaptive psychophysical mechanics into video-game-style mechanics to achieve robust, reliable measurements. Translational Psychiatry (2016) 6, e893; doi:10.1038/tp.2016.178; published online 20 September 2016 INTRODUCTION Cognition is typically associated with measures of intelligence (for example, intellectual quotient (IQ)1), and is a reflection of one’s ability to perform higher-level processes by engaging specific mechanisms associated with learning, memory and reasoning. Such acts require the engagement of a specific subset of cognitive resources called cognitive control abilities,2–5 which engage the underlying neural mechanisms associated with atten- tion, working memory and goal-management faculties.6 These abilities are often assessed with validated pencil-and-paper approaches or, now more commonly with these same paradigms deployed on either desktop or laptop computers. These approaches are often less than ideal when assessing pediatric populations, as children have highly varied degree of testing engagement, leading to low test sensitivity.7–9 This is especially concerning when characterizing clinical populations, as increased performance variability in these groups often exceeds the range of testing sensitivity,7–9 limiting the ability to characterize cognitive deficits in certain populations. A proper assessment of cognitive control abilities in children is especially important, as these abilities allow children to interact with their complex environment in a goal-directed manner,10 are predictive of academic performance11 and are correlated with overall quality of life.12 For pediatric clinical populations, this characterization is especially critical as they are often assessed in an indirect fashion through intelligence quotients, parent report questionnaires13 and/or behavioral challenges,14 each of which fail to properly characterize these abilities in a direct manner. One approach to make testing more robust and user-friendly is to present material in an optimally engaging manner, a strategy particularly beneficial when assessing children. The rise of digital health technologies facilitates the ability to administer these types of tests on tablet-based technologies (that is, iPad) in a game-like manner.15 For instance, Dundar and Akcayir16 assessed tablet- based reading compared with book reading in school-aged children, and discovered that students preferred tablet-based reading, reporting it to be more enjoyable. Another approach used to optimize the testing experience involves the integration of adaptive staircase algorithms, as the incorporation of such appro- aches lead to more reliable assessments that can be completed in a timely manner. This approach, rooted in psychophysical research,17 has been a powerful way to ensure that individuals perform at their ability level on a given task, mitigating the possi- bility of floor/ceiling effects. With respect to assessing individual abilities, the incorporation of adaptive mechanics acts as a normalizing agent for each individual in accordance with their underlying cognitive abilities,18 facilitating fair comparisons between groups (for example, neurotypical and study populations). Adaptive mechanics in a consumer-style video game experi- ence could potentially assist in the challenge of interrogating cognitive abilities in a pediatric patient population. This synergistic approach would seemingly raise one’s level of engagement by making the testing experience more enjoyable and with greater sensitivity to individual differences, a key aspect typically missing in both clinical and research settings when testing these populations. Video game approaches have previously been utilized in clinical adult populations (for example, stroke,19,20 1Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; 2Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; 3Akili Interactive Labs, Boston, MA, USA; 4Department of Pediatrics, Columbia University Medical Center, New York, NY, USA and 5Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA. Correspondence: JA Anguera or EJ Marco, University of California, San Francisco, Mission Bay – Sandler Neurosciences Center, UCSF MC 0444, 675 Nelson Rising Lane, Room 502, San Francisco, CA 94158, USA. E-mail: joaquin.anguera@ucsf.edu or elysa.marco@ucsf.edu Received 6 March 2016; revised 13 July 2016; accepted 18 July 2016 Citation: Transl Psychiatry (2016) 6, e893; doi:10.1038/tp.2016.178 www.nature.com/tp Figure 2. Project: EVO selective attention performance. (a) EVO single- and multi-tasking response time performance f non-affected siblings and non-affected control groups). (b) EVO multi-tasking RT. (c) Visual search task performance Characterizing cognitive control abilities in child JA Anguera et al •Project EVO (게임)을 통해서, •아동 집중력 장애(attention disorder) 관련 특정 유전형 carrier 를 골라낼 수 있음 •게임에서의 Response Time을 기준으로 carrier vs. non-carrier 간 유의미한 차이
  68. RESEARCH ARTICLE A pilot study to determine the feasibility of

    enhancing cognitive abilities in children with sensory processing dysfunction Joaquin A. Anguera1,2☯*, Anne N. Brandes-Aitken1☯ , Ashley D. Antovich1, Camarin E. Rolle1, Shivani S. Desai1, Elysa J. Marco1,2,3 1 Department of Neurology, University of California, San Francisco, United States of America, 2 Department of Psychiatry, University of California, San Francisco, United States of America, 3 Department of Pediatrics, University of California, San Francisco, United States of America ☯ These authors contributed equally to this work. * joaquin.anguera@ucsf.edu Abstract Children with Sensory Processing Dysfunction (SPD) experience incoming information in atypical, distracting ways. Qualitative challenges with attention have been reported in these children, but such difficulties have not been quantified using either behavioral or functional neuroimaging methods. Furthermore, the efficacy of evidence-based cognitive control inter- ventions aimed at enhancing attention in this group has not been tested. Here we present work aimed at characterizing and enhancing attentional abilities for children with SPD. A sample of 38 SPD and 25 typically developing children were tested on behavioral, neural, and parental measures of attention before and after a 4-week iPad-based at-home cognitive remediation program. At baseline, 54% of children with SPD met or exceeded criteria on a parent report measure for inattention/hyperactivity. Significant deficits involving sustained attention, selective attention and goal management were observed only in the subset of SPD children with parent-reported inattention. This subset of children also showed reduced midline frontal theta activity, an electroencephalographic measure of attention. Following the cognitive intervention, only the SPD children with inattention/hyperactivity showed both improvements in midline frontal theta activity and on a parental report of inattention. Notably, 33% of these individuals no longer met the clinical cut-off for inattention, with the parent- reported improvements persisting for 9 months. These findings support the benefit of a targeted attention intervention for a subset of children with SPD, while simultaneously highlighting the importance of having a multifaceted assessment for individuals with neuro- developmental conditions to optimally personalize treatment. Introduction Five percent of all children suffer from Sensory Processing Dysfunction (SPD)[1], with these individuals exhibiting exaggerated aversive, withdrawal, or seeking behaviors associated with sensory inputs [2]. These sensory processing differences can have significant and lifelong con- sequences for learning and social abilities, and are often shared by children who meet PLOS ONE | https://doi.org/10.1371/journal.pone.0172616 April 5, 2017 1 / 19 a1111111111 a1111111111 a1111111111 a1111111111 a1111111111 OPEN ACCESS Citation: Anguera JA, Brandes-Aitken AN, Antovich AD, Rolle CE, Desai SS, Marco EJ (2017) A pilot study to determine the feasibility of enhancing cognitive abilities in children with sensory processing dysfunction. PLoS ONE 12(4): e0172616. https://doi.org/10.1371/journal. pone.0172616 Editor: Jacobus P. van Wouwe, TNO, NETHERLANDS Received: October 5, 2016 Accepted: February 1, 2017 Published: April 5, 2017 Copyright: © 2017 Anguera et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are within the paper and its Supporting Information files. Funding: This work was supported by the Mickelson-Brody Family Foundation, the Wallace Research Foundation, the James Gates Family Foundation, the Kawaja-Holcombe Family Foundation (EJM), and the SNAP 2015 Crowd funding effort. •감각처리장애(SPD)를 가진 소아 환자 중 ADHD를 가진 20명에 대해서 실험 •4주 동안 (주당 5일, 25분)Project EVO 게임을 하게 한 결과, •20명 중 7명이 큰 개선을 보여서 더 이상 ADHD의 범주에 들지 않게 됨 •사용 후 적어도 9개월 동안 효과가 지속되었음 Fig 4. Transfer effect on behavioral and parent report measures. Pre and post (A) response time (B) and respo revealing within group change. Error bars indicate standard error of the mean. Within group main effects of session = p .05, ** =.p .01. Sun symbols indicate statistically significant instances where SPD+IA post-training performa TDC group prior to training. (C) Vanderbilt parent report inattention change bar plot (calculated by pre-post margina significant group x session interaction. Error bars indicate standard error of the mean. All group x session interactio stars (* = p .05, ** =.p .01) on bar graph. https://doi.org/10.1371/journal.pone.0172616.g004 PLOS ONE | https://doi.org/10.1371/journal.pone.0172616 April 5, 2017
  69. •ADHD에 대해서는 대규모 RCT phase III 임상 시험 진행 중이며,

    FDA 의료기기 인허가 목표 •8-12살 환자(n=330), 치료 효과 없는 비디오게임을 control group으로 •primary endpoint: TOVA •의사의 처방을 받는 ADHD 치료용 게임 + 보험사의 커버 목표
  70. 테라노스 사태의 본질은?

  71. https://www.theranos.com/content/images/news/we-publish-prices.jpg 240 lab tests, less than $15 each

  72. http://graphics.wsj.com/billion-dollar-club/ •기업 가치 $9b (June 2014) •총 투자유치 규모: $400m

    •엘리자베스 홈즈 본인이 과반 이상 지분 보유
  73. The Journal of Clinical Investigation C L I N I

    C A L M E D I C I N E Introduction Clinical laboratory testing plays a critical role in health care and evidence-based medicine (1). Lab tests provide essential data that support clinical decisions to screen, diagnose, and treat health conditions (2). Most individuals encounter clinical testing through their health care provider during a routine health assess- ment or as a patient in a health care facility. However, individu- als are increasingly playing more active roles in managing their health, and some now seek direct access to laboratory testing for self-guided assessment or monitoring (3–5). In the USA, all clinical laboratory testing conducted on humans is regulated by Centers for Medicare & Medicaid Services (CMS) based on guidelines outlined in Clinical Laboratory Improvement Amendments (CLIA) (6). To ensure analytical quality of labora- tory methods, certified laboratories are required to participate in periodic proficiency testing using a homogeneous batch of sam- ples that are distributed to each laboratory from a CMS-approved proficiency testing program. These programs assess the total allowable error (TEa) that combines method bias and total impre- cision for each analyte. Acceptability criteria are determined by CLIA and/or the appropriate accrediting agency (7). Direct-to-consumer service models now provide means for individuals to obtain laboratory testing outside traditional health care settings (4, 5). One company implementing this new model is Theranos, which offers a blood testing service that uses capillary tube collection and promises several advantages over traditional venipuncture: lower collection volumes (typically ≤150 μl versus ≥1.5 ml), convenience, and reduced cost — on average about 5-fold less than the 2 largest testing laboratories in the USA (Quest and LabCorp) (8). However, availability of these services varies by state, where access to offerings may be more or less restrictive BACKGROUND. Clinical laboratory tests are now being prescribed and made directly available to consumers through retail outlets in the USA. Concerns with these test have been raised regarding the uncertainty of testing methods used in these venues and a lack of open, scientific validation of the technical accuracy and clinical equivalency of results obtained through these services. METHODS. We conducted a cohort study of 60 healthy adults to compare the uncertainty and accuracy in 22 common clinical lab tests between one company offering blood tests obtained from finger prick (Theranos) and 2 major clinical testing services that require standard venipuncture draws (Quest and LabCorp). Samples were collected in Phoenix, Arizona, at an ambulatory clinic and at retail outlets with point-of-care services. RESULTS. Theranos flagged tests outside their normal range 1.6× more often than other testing services (P < 0.0001). Of the 22 lab measurements evaluated, 15 (68%) showed significant interservice variability (P < 0.002). We found nonequivalent lipid panel test results between Theranos and other clinical services. Variability in testing services, sample collection times, and subjects markedly influenced lab results. CONCLUSION. While laboratory practice standards exist to control this variability, the disparities between testing services we observed could potentially alter clinical interpretation and health care utilization. Greater transparency and evaluation of testing technologies would increase their utility in personalized health management. FUNDING. This work was supported by the Icahn Institute for Genomics and Multiscale Biology, a gift from the Harris Family Charitable Foundation (to J.T. Dudley), and grants from the NIH (R01 DK098242 and U54 CA189201, to J.T. Dudley, and R01 AG046170 and U01 AI111598, to E.E. Schadt). Evaluation of direct-to-consumer low-volume lab tests in healthy adults Brian A. Kidd,1,2,3 Gabriel Hoffman,1,2 Noah Zimmerman,3 Li Li,1,2,3 Joseph W. Morgan,3 Patricia K. Glowe,1,2,3 Gregory J. Botwin,3 Samir Parekh,4 Nikolina Babic,5 Matthew W. Doust,6 Gregory B. Stock,1,2,3 Eric E. Schadt,1,2 and Joel T. Dudley1,2,3 1Department of Genetics and Genomic Sciences, 2Icahn Institute for Genomics and Multiscale Biology, 3Harris Center for Precision Wellness, 4Department of Hematology and Medical Oncology, and 5Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 6Hope Research Institute (HRI), Phoenix, Arizona, USA. Conflict of interest: J.T. Dudley owns equity in NuMedii Inc. and has received consulting fees or honoraria from Janssen Pharmaceuticals, GlaxoSmithKline, AstraZeneca, and LAM Therapeutics. Role of funding source: Study funding provided by the Icahn Institute for Genomics and Multiscale Biology and the Harris Center for Precision Wellness at the Icahn School of Medicine at Mount Sinai. Salaries of B.A. Kidd, J.T. Dudley, and E.E. Schadt Downloaded from http://www.jci.org on March 28, 2016. http://dx.doi.org/10.1172/JCI86318 •Mt Sinai 에서 내어놓은 Theranos 의 정확도에 대한 논문 •2015년 7월 경에 60명의 건강한 환자들을 대상으로 5일 간에 걸쳐서 •22가지의 검사 항목을 테라노스와 또 다른 두 군데의 검사 기관에 맡겨서 결과를 비교 •결론적으로 Theranos의 결과가 많이 부정확 •콜레스테롤 등의 경우는 의사의 진단이 바뀔 정도로 크게 부정확 •전반적인 테스트들 결과 정상 범위가 아니라고 판단하는 경우가 테라노스가 1.6배 많음 •22개의 검사 항목 중에서 15개에서 유의미하게 결과의 차이가 있었습니다. •논문에서는 알 수 없는 또 다른 문제 •Theranos가 자체적으로 개발했다고 '주장' 했던 에디슨 기기를 정말로 썼느냐...하는 것 •WSJ 에 나온 과거 직원의 증언에 따르면, 이미 2015년 7월경이라면, •에디슨 기기를 쓰지 않고 지멘스 등 기존 다른 기기에 혈액을 희석해서 쓰고 있을 때 •역시나(?) 이번에도 테라노스는 conflict-of-interest 가 있는 잘못된 논문이라는 반응
  74. Theranos Original Pitchdeck 2006 아무런 근거와 데이터가 없는데도 투자한 investors

  75. https://www.refinery29.com/en-us/2019/03/225707/theranos-investors-list-elizabeth-holmes#slide-1

  76. $4.5b 에서 $0 으로.

  77. 아직은 초기라서 근거가 없다면, 적어도…

  78. 의학적, 과학적으로 말이 되는 것을 주장하고, 그런 곳에만 투자해야 한다.

    (사업이 근거로 하고 있는 가설이 의학적, 과학적으로 타당해야 한다.)
  79. 스타트업도, 투자자도, 규제기관도 전문성을 가져야 한다. (하지만 자신의 전문성을 평가하기

    위해서는, 그 자체로 전문성이 필요하다.)
  80. IMM인베스트먼트 문여정 이사 (산부인과 전문의)
 @스타트업 생태계 컨퍼런스 2019

  81. “한국의 헬스케어에는 답이 없다는 것을 아는 스타트업에 투자해야 한다.” IMM인베스트먼트

    문여정 이사 (산부인과 전문의)
 @스타트업 생태계 컨퍼런스 2019
  82. 한국 의료 시스템의 특수성을 이해하라 실리콘밸리 그대로 따라했다가 전과자 된다.

  83. 한국 의료 시스템의 특수성을 이해하라 •한국 의료 체계는 미국, 혹은

    다른 국가와 크게 다르다. •국내 의료 시스템의 특성을 명확히 파악할 필요가 있다. •미국에서 대박났던 것이, 한국에서는 통하지 않거나 / 불법일 수 있다. •반대로, 한국에서 안 통하던 것이, 미국 등에서는 통할 수 있다.
  84. 의료 사고 부담 더 많은 데이터 부족한 시간 3분 진료

    저수가 EMR 전공의 특별법 인력 부족 과도한 업무 사회적 인식 논문 실적 유전체 분석 진료 실적 삭감 진상 환자 의사의 삶은 고달프다
  85. 의료 사고 부담 더 많은 데이터 부족한 시간 3분 진료

    저수가 EMR 전공의 특별법 인력 부족 과도한 업무 사회적 인식 논문 실적 유전체 분석 진료 실적 삭감 진상 환자 헬스케어 스타트업은?
  86. 신의료기술평가 문재인케어 의료전달체계 3분 진료 전공의특별법 단일 건강 보험 당연지정제

    심평의학 저수가 당신의 사업에 어떤 영향을 미치나요? 이를 명확히 알지 못하면, 준비가 덜 되어도 한참 덜 된 것.
  87. Quiz: 다음 사례들의 공통점은?

  88. Results within 6-8 weeks A little spit is all it

    takes! DTC Genetic Testing Direct-To-Consumer 침 뱉아서 택배로 보내면 개인의 유전 정보를 검사해준다
  89. CellScope’s iPhone-enabled otoscope 고막을 스마트폰으로 촬영해서 의사에게 보내면 진단을 내려준다

  90. AliveCor Heart Monitor (Kardia) 스마트폰으로 측정한 심전도를 의사에게 보내 부정맥을

    진단 받는다
  91. 애플워치로 측정한 심전도를 의사에게 보내어서 부정맥을 체크한다

  92. Doctor On Demand, B2C 원격 진료 서비스

  93. transfer from Share2 to HealthKit as mandated by Dexcom receiver

    Food and Drug Administration device classification. Once the glucose values reach HealthKit, they are passively shared with the Epic MyChart app (https://www.epic.com/software-phr.php). The MyChart patient portal is a component of the Epic EHR and uses the same data- base, and the CGM values populate a standard glucose flowsheet in the patient’s chart. This connection is initially established when a pro- vider places an order in a patient’s electronic chart, resulting in a re- quest to the patient within the MyChart app. Once the patient or patient proxy (parent) accepts this connection request on the mobile device, a communication bridge is established between HealthKit and MyChart enabling population of CGM data as frequently as every 5 Participation required confirmation of Bluetooth pairing of the CGM re- ceiver to a mobile device, updating the mobile device with the most recent version of the operating system, Dexcom Share2 app, Epic MyChart app, and confirming or establishing a username and password for all accounts, including a parent’s/adolescent’s Epic MyChart account. Setup time aver- aged 45–60 minutes in addition to the scheduled clinic visit. During this time, there was specific verbal and written notification to the patients/par- ents that the diabetes healthcare team would not be actively monitoring or have real-time access to CGM data, which was out of scope for this pi- lot. The patients/parents were advised that they should continue to contact the diabetes care team by established means for any urgent questions/ concerns. Additionally, patients/parents were advised to maintain updates Figure 1: Overview of the CGM data communication bridge architecture. BRIEF COMMUNICATION Kumar R B, et al. J Am Med Inform Assoc 2016;0:1–6. doi:10.1093/jamia/ocv206, Brief Communication by guest on April 7, 2016 http://jamia.oxfordjournals.org/ Downloaded from JAMIA 2016 Remote Patients Monitoring via Dexcom-HealthKit-Epic-Stanford 제1형 당뇨환자의 혈당을 연속혈당계로 측정하여, 
 아이폰, EMR을 거쳐 
 스탠퍼드 대학병원의 의료진이 모니터링한다.
  94. PillPack, 약을 집으로 배송해준다

  95. Hims: 탈모약, 발기부전 치료제 등을 원격 처방 및 배송

  96. Pager, 우버처럼 의사를 집으로 부른다

  97. Lyft가 환자를 집에서 병원까지, 병원에서 집까지 태워준다

  98. 보험에 가입하면 애플워치를 공짜로 주고, 건강 목표치 달성에 따라 리워드/패널티를

    부여
  99. 공통점?

  100. 한국에서는 불법. (or, 회색지대, 수가를 받지 못함)

  101. “한국의 헬스케어에는 답이 없다는 것을 아는 스타트업에 투자해야 한다.” IMM인베스트먼트

    문여정 이사 (산부인과 전문의)
 @스타트업 생태계 컨퍼런스 2019
  102. 답이 없는 한국의 헬스케어 시스템, 스타트업에게는 어떤 옵션이 있나?

  103. 답이 없는 한국의 헬스케어 시스템, 스타트업에게는 어떤 옵션이 있나? 1.

    시스템에 도전하여 변화를 이끈다. (23andMe) 2. 시스템 하에서 최선의 답을 찾는다. (현재 상장사들) 3. 시스템의 틈새를 공략한다. (타다) 4. 시스템을 회피한다. (웰니스) 5. 다른 시스템으로 간다. (해외 진출)
  104. 답이 없는 한국의 헬스케어 시스템, 스타트업에게는 어떤 옵션이 있나? 1.

    시스템에 도전하여 변화를 이끈다. (23andMe) 2. 시스템 하에서 최선의 답을 찾는다. (현재 상장사들) 3. 시스템의 틈새를 공략한다. (타다) 4. 시스템을 회피한다. (웰니스) 5. 다른 시스템으로 간다. (해외 진출)
  105. 답이 없는 한국의 헬스케어 시스템, 스타트업에게는 어떤 옵션이 있나? 1.

    시스템에 도전하여 변화를 이끈다. (23andMe) 2. 시스템 하에서 최선의 답을 찾는다. (현재 상장사들) 3. 시스템의 틈새를 공략한다. (타다) 4. 시스템을 회피한다. (웰니스) 5. 다른 시스템으로 간다. (해외 진출)
  106. 답이 없는 한국의 헬스케어 시스템, 스타트업에게는 어떤 옵션이 있나? 1.

    시스템에 도전하여 변화를 이끈다. (23andMe) 2. 시스템 하에서 최선의 답을 찾는다. (현재 상장사들) 3. 시스템의 틈새를 공략한다. (타다) 4. 시스템을 회피한다. (웰니스, 반려동물) 5. 다른 시스템으로 간다. (해외 진출)
  107. 답이 없는 한국의 헬스케어 시스템, 스타트업에게는 어떤 옵션이 있나? 1.

    시스템에 도전하여 변화를 이끈다. (23andMe) 2. 시스템 하에서 최선의 답을 찾는다. (현재 상장사들) 3. 시스템의 틈새를 공략한다. (타다) 4. 시스템을 회피한다. (웰니스) 5. 다른 시스템으로 간다. (해외 진출)
  108. 1. 시스템에 도전하여 변화를 이끈다. (23andMe) 2. 시스템 하에서 최선의

    답을 찾는다. (현재 상장사들) 3. 시스템의 틈새를 공략한다. (타다) 4. 시스템을 회피한다. (웰니스, 반려동물) 5. 다른 시스템으로 간다. (해외 진출) 답이 없는 한국의 헬스케어 시스템, 스타트업에게는 어떤 옵션이 있나?
  109. 더 도전적인 스타트업이 필요하다 ‘새로운 시대의 헬스케어 스타트업’

  110. •기존 이해관계자를 mimic하면서 완전히 새로운 모델을 제시하는 야심있는 스타트업 •‘a

    new-age payer’ or ‘a new-age PBM(Pharmacy Benefit Management)’ •기존의 헬스케어 산업의 범주를 뭉개버리는 스타트업 •Oscar는 기존의 payer 역할에서 provider 까지 진출하고 있음 •23andMe 는 유전정보 분석회사에서 제약회사도 되고 있음 •Ginger.io 는 B2B 헬스케어 스타트업에서 provider도 되었음 어떠한 스타트업을 찾고 있는가? Health 2.0 2017 Annual Conference VC’s Talk New Trends in Investing
  111. 개인 유전 정보 분석 회사에서, 데이터 기반의 제약사로 확장

  112. 디지털 헬스케어 기반 보험사에서, 의료기관으로 확장

  113. 디지털 표현형 기반의 정신 상담 서비스에서, 의료기관으로 확장

  114. IoT 스마트 칫솔 제조사에서, 데이터 기반 보험사로 확장

  115. 암 환자 데이터 분석 회사에서, 신약개발/임상시험 혁신으로

  116. SW 기반의 ‘디지털 치료제’ 개발 제약사, FDA 최초 승인

  117. 한국에서 이런 도전적인 스타트업을 어떻게 만들 수 있을까?

  118. 더 많은 수의 스타트업이 필요하다 더 많은 씨앗에서, 더 많은

    혁신이
  119. Rock Health, 연간 800개 디지털 헬스케어 스타트업 검토 (그 중

    1%에 투자) Rock Health Summit 2017
  120. DHP는 정기적으로 DHP Office Hour 를 통해, 유망한 헬스케어 스타트업을

    초청하여 자문, 네트워크, 투자를 지원합니다. 매달 세 팀을 초청하여 한 시간씩 무료로 자문을 제공 참여를 원하는 초기 헬스케어 스타트업은 dhp@dhpartners.io로 소개자료를 보내주세요
  121. 수십명의 의료/스타트업 전문가들이 오직 하나의 스타트업을 위해 자문 DHP Office

    Hour
  122. DHP Office Hour 수십명의 의료/스타트업 전문가들이 오직 하나의 스타트업을 위해

    자문
  123. “어떻게 하면 업계의 규모를 키울 수 있을까?” “어떻게 하면 더

    많은 스타트업이 나올까?”
  124. DHP는 삼성서울병원의 헬스케어 해커톤을 공동 개최하여 유망 아이디어와 스타트업 팀을

    발굴하여, 사업화를 지원하고 있습니다. 2016년 2017년 2018년 2019년
  125. DHP는 삼성서울병원의 헬스케어 해커톤을 공동 개최하여 유망 아이디어와 스타트업 팀을

    발굴하여, 사업화를 지원하고 있습니다.
  126. https://www.digitalhealthhack.org/ DHP는 삼성서울병원의 헬스케어 해커톤을 공동 개최하여 유망 아이디어와 스타트업

    팀을 발굴하여, 사업화를 지원하고 있습니다.
  127. DHP는 DHP Healthcare Startup Summit 을 개최하여, 헬스케어 스타트업 생태계

    모두가 참여하는 교류의 장을 마련하려 합니다. •헬스케어/의료 전문가들의 초청 세미나 •DHP 포트폴리오 스타트업의 데모 행사 •스타트업-투자자-의료전문가 등의 네트워킹 세미나 + 데모데이 + 네트워킹 벤처 캐피털 보험사 대기업 정부 규제기관 환자 병원 심평원
  128. DHP는 DHP Healthcare Startup Summit 2017은 
 헬스케어 스타트업 생태계

    구성원 모두가 참여하며 성료되었습니다. 최윤섭 파트너의 DHP 소개 김치원 파트너의 ‘디지털 헬스케어 비즈니스 모델’ 강연 정지훈 파트너의 ‘의료 인공지능 기술 동향’ 강연 포트폴리오 기업 3billion (금창원 대표님)의 데모 데이
  129. •DSC인베스트먼트 •IMM인베스트먼트 •디티엔인베스트먼트 •더웰스인베스트먼트 •메가인베스트먼트 •미래에셋대우 •삼성증권 IB본부 스타트업 벤처캐피털

    의료계 산업계 •스마일게이트 •스톤브릿지캐피탈 •LB인베스트먼트 •인터베스트 •카이스트청년창투 •트랜스링크캐피털 •한국투자파트너스 •서지컬마인드 •엠트리케어 •와이브레인 •웰트 •이놈들연구소 •휴레이포지티 브 •힐세리온 •3billion •Lunit •VUNO •닥터다이어리 •닥터스팹 •메디픽셀 •브릿지갭 •삼성서울병원 •서울대학병원 •서울아산병원 •서울의료원 •의정부의료원 •중앙대학병원 •한양대학교병원 •가천대학병원 •경희대학병원 •대전웰니스병원 •동국대학교 일산병원 •메디플렉스 세종병원 •베스티안서울병원 •분당서울대학병원 •로아인벤션랩 •매쉬업엔젤스 •미래과학기술지주 •블루포인트파트너스 •스마일게이트 오렌지팜 •스타트업얼라이언스 •퓨처플레이 •서울바이오허브 •김앤장법률사무소 •과학기술정책연구원 •보건복지부 •보건산업진흥원 •식약처 •한국과학기술연구원 •뉴스1 •매일경제신문 •메디게이트뉴스 •메디칼업저버 •시사저널 •연합뉴스 •메트라이프생명보험 •삼성메디슨 •삼성전자 •삼성화재 •아이센스 •이원다이애그노믹스 •지멘스 •테라젠이텍스 •필립스 코리아 •한국UCB제약 •IBM •KT •SK텔레콤 •듀퐁 코리아 •라이나생명 •HULT International Business School •UNIST •가천대학교 •경희대학교 •노스웨스턴 대학 학계 •서울대학교 •성균관대학교 •중앙대학교 •한양대학교 •한국경제신문 엑셀러레이터 정부/규제/법률 언론 •홍익대학교 •명지고등학교 •한화생명 •유비케어 •마크로젠 DHP는 DHP Healthcare Startup Summit 2017은 
 헬스케어 스타트업 생태계 구성원 모두가 참여하며 성료되었습니다.
  130. 최윤섭 파트너의 DHP 소개 닥터다이어리 (송제윤 대표님)의 데모 서지컬마인드 (김일

    대표님)의 데모 패널토의: DHP 파트너들과의 수다 신재원 파트너의 헬스케어 스타트업 강의 장진규 파트너의 헬스케어 UX 강의 참가자 전원 10초 자기 소개와 네트워킹 DHP는 DHP Healthcare Startup Summit 2018은 
 헬스케어 스타트업 생태계 구성원 200여명이 참여하며 성료되었습니다.
  131. 스타트업 벤처캐피털 의료계 산업계 엑셀러레이터 정부 •3billion •닥터다이어리 •서지컬마인드 •젤리랩

    •VRAD •휴먼스케이프 •엠트리케어 •모바일닥터 •VUNO •WELT •힐세리온 •닥터스팹 •NOOM •비브로스 •닥프렌즈 •딥메디 •네오펙트 •왓비타 •티엘리시움 •로쉐린 •스피링크 •본엔젤스 •KB인베스트먼트 •아주IB투자 •KTB네트워크 •현대기술투자 •D3쥬빌리 •네이버 D2SF •미래에셋벤처투자 •IMM인베스트먼트 •미래과학기술지주 •카이스트벤처스 •LB인베스트먼트 •인터베스트 •세마트랜스링크캐피털 •베이스인베스트먼트 •CKD창투 •동훈인베스트먼트 •디티엔인베스트먼트 •더웰스인베스트먼트 •삼성벤처투자 •브릿지온벤처스 •JX파트너스 •서울대학교병원 •분당서울대병원 •삼성서울병원 •서울아산병원 •고대안암병원 •부천성모병원 •삼성창원병원 •대전웰니스병원 •부천성모병원 •참포도나무병원 •중앙대학병원 •단국대치과병원 •서울의료원 •국립중앙의료원 •매쉬업엔젤스 •네이버 D2SF •퓨처플레이 •네오플라이 •Shift •크리에이티브스퀘어 •컴퍼니D 언론 •매일경제 •한국경제신문 •조선비즈 •디지털타임즈 •전자신문 •서울경제신문 •벤처스퀘어 •아웃스탠딩 •메디컬업저버 •메디게이트뉴스 •식약처 •서울시청 •보건산업진흥원 •SSEC 스타트업 지원 •스타트업 얼라이언스 •아산나눔재단 •디캠프 •스마일게이트 •서울바이오허브 학계 •서울대학교 의과대학 •경희대학교 의과대학 •아주대학교 의과대학 •가천대학교 의과대학 •성균관대 디지털헬스학과 •성균관대 의료기기산업학과 •연세대학교 보건대학원 •단국대학교 치과대학 •KAIST •UNIST •AIRI 인공지능연구원 •KIST •인천가톨릭대학교 •가톨릭관동대학교 •국민대학교 •융합기술원 •경희사이버대학교 •SADI IT •삼성전자 •IBM •마이크로소프트 •카카오 •SK텔레콤 •KT •베스핀글로벌 •빈티지랩 제약 •UCB 제약 •노바티스 •존슨앤존슨 •한미약품 •유한양행 •대웅제약 •안국약품 •SK바이오팜 의료기기 •지멘스 •필립스 •제이시스메디칼 보험 •삼성화재 •라이나생명 •한화생명 •처브라이프생명 •손해보험협회 법률/특허 •김앤장법률사무소 •테크앤로법률사무소 •BLT특허법률사무소 금융 •삼성증권 •중소기업은행
  132. DHP는 DHP Healthcare Startup Demo Day 2019 는 
 헬스케어

    스타트업 생태계 구성원 150여명이 참여하며 성료되었습니다.
  133. DHP는 DHP Healthcare Startup Demo Day 2019 는 
 헬스케어

    스타트업 생태계 구성원 150여명이 참여하며 성료되었습니다. 3billion 서지컬마인드 휴먼스케이프 뮨 메디히어 닥터다이어리
  134. DHP는 국내 헬스케어 스타트업의 생태계를 발전시키기 위한 세미나, 교육 과정

    등 다양한 행사들을 진행하고 있습니다. 실리콘밸리 로펌 등의 헬스케어 산업 전문 변호사 초청 세미나 패널 토의: 김정은 변호사(LW), 유지현 변호사(광장), 최윤섭 대표 김정은 변호사 (Latham & Watkins 실리콘밸리 사무소) 강의
  135. DHP는 국내 헬스케어 스타트업의 생태계를 발전시키기 위한 세미나, 교육 과정

    등 다양한 행사들을 진행하고 있습니다. 디지털 헬스케어 관련 강좌 (패스트캠퍼스와 협업) 대기업, 스타트업, VC, 의료계 등 180여 명 참석 헬스케어 기술 (인공지능, 블록체인 등), 규제, 진료과별 혁신의 기회
  136. •니즈가 있는 것을 만들어야 한다. •헬스케어는 매우 세분화된 시장이며, 니즈와

    지불의사도 다르다. •헬스케어에서 사용자, 결정자, 지불자는 일치하지 않을 수 있다. •근거가 중요하다. 타당성을 판단할 전문성도 필요하다. 혁신적인 디지털 헬스케어 스타트업이 정말 한국에서 나오려면
  137. •‘답이 없는’ 한국 의료의 특수성을 이해해야 한다. •스타트업의 옵션: 시스템에

    도전 / 적응 / 틈새 / 회피 / 탈피 •더 도전적인 스타트업 + 더 많은 숫자의 스타트업 •결국은 생태계가 필요하다. 혁신적인 디지털 헬스케어 스타트업이 정말 한국에서 나오려면
  138. ࣁ࢚ਸ ߄Ե ഄन੸ੋ ٣૑ణ ೾झாয झఋ౟স੄ द੘, DHP о ೣԋ

    ೞѷणפ׮. dhpartners.io yoonsup.choi@dhpartners.io