Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Language Model Based Grammatical Error Correcti...
Search
youichiro
July 25, 2018
Technology
0
180
Language Model Based Grammatical Error Correction without Annotated Training Data
長岡技術科学大学
自然言語処理研究室
文献紹介(2018-07-25)
youichiro
July 25, 2018
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.6k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
110
Multi-Agent Dual Learning
youichiro
1
180
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
130
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
150
勉強勉強会
youichiro
0
90
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
200
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
180
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
210
Other Decks in Technology
See All in Technology
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
670
AIと二人三脚で育てた、個人開発アプリグロース術
zozotech
PRO
1
710
AI時代の開発フローとともに気を付けたいこと
kkamegawa
0
2.9k
Overture Maps Foundationの3年を振り返る
moritoru
0
170
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
800
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
210
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
1
170
計算機科学をRubyと歩む 〜DFA型正規表現エンジンをつくる~
ydah
3
230
品質のための共通認識
kakehashi
PRO
3
250
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.2k
30分であなたをOmniのファンにしてみせます~分析画面のクリック操作をそのままコード化できるAI-ReadyなBIツール~
sagara
0
120
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Facilitating Awesome Meetings
lara
57
6.7k
Docker and Python
trallard
47
3.7k
Navigating Team Friction
lara
191
16k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The World Runs on Bad Software
bkeepers
PRO
72
12k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Transcript
Language Model Based Grammatical Error Correction without Annotated Training Data
Christopher Bryant and Ted Briscoe Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 247–253, 2018 ⽂献紹介(2018-07-25) ⻑岡技術科学⼤学 ⾃然⾔語処理研究室 ⼩川 耀⼀朗 1
Abstract l ⾔語モデルを⽤いた⽂法誤り訂正アプローチ l シンプルかつ少量のアノテーションデータしか⽤いない⾔ 語モデルアプローチが、⼤量のアノテーションデータで訓 練されたモデルと競争できる性能を⽰した 2
Introduction l CoNNL-2014 shared taskではTop3のチーム全てがSMTあ るいはclassifier-baseのシステムを⽤いた l これ以降、SMTやSMTとclassifierの混同、NMTのアプロー チにフォーカスした研究が進んでいる l
⾔語モデルを⽤いた⼿法に関する研究は⼤きく停滞した Ø GECにおける⾔語モデルアプローチを再調査する 3
Method l ⾔語モデル確率の低い⽂は、⾔語モデル確率の⾼い⽂よ りも⽂法誤りを含んでいるであろうというアイデア 1. ⼊⼒⽂の⾔語モデルスコアを計算する 2. ⽂中の各単語において、訂正候補セットを作る 3. 各単語における各訂正候補で置換した⽂を⽣成し、
再び⽂のスコアを計算する 4. 訂正候補の中から、スコアが閾値よりもが⾼くなる 1⽂を選ぶ 5. ステップ1~4を繰り返す 4
Method l 訂正時にスコアの閾値を設定しておき、その閾値を超える 候補にのみ訂正する 5
Method 訂正候補セット l 以下の英語のエラータイプを対象とする non-words, morphology, article and prepositions l
Non-words(⾮単語) ex) [freind → friend] CyHunspell*1を使⽤し、訂正候補を⽣成する *1 https://pypi.org/project/CyHunspell/ 6
Method 訂正候補セット l Morphology(語形) - noun number: [cat → cats]
- verb tense: [eat → ate] - adjective form: [big → bigger] など Automatically Generated Inflection Database(AGID)*2から、訂正 候補を⽣成する l Articles and Prepositions(冠詞と前置詞) article: {φ, a, an, the} preposition: {φ, about, at, by, for, from, in, of, on, to, with} *2 http://wordlist.aspell.net/other/ 7
Experiment l ⾔語モデルの構築 5-gram language model trained on the One
Billion Word Benchmark dataset*3 with KenLM l 開発セットとテストセット CoNLL-2013, CoNLL-2014, FCE, JFLEGを使⽤ 8 *3 https://arxiv.org/pdf/1312.3005.pdf
Experiment ⾔語モデルスコアの 閾値のチューニング - CoNNL-2013: 2% - FCE-dev: 4% -
JFLEG-dev: 5% 9
Result 10
Result 11
Conclusion 12 l ⽂法誤り訂正のためのシンプルで少量のアノテーションデータしか使わ ない⾔語モデルアプローチを提案し、⼤量のアノテーションデータを必 要とする機械翻訳アプローチと競争できることを⽰した l このシステムは特定のエラータイプしか訂正できない制限があるため、 missing words(単語の不⾜)など他のエラータイプも訂正可能にするが
課題に挙げられる