Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介/Predicting Online Performance of News Reco...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
ysekky
December 22, 2015
Research
0
360
論文紹介/Predicting Online Performance of News Recommender Systems
ysekky
December 22, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.3k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.8k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
810
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
3k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.6k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
170
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.9k
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
530
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
270
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
460
Remote sensing × Multi-modal meta survey
satai
4
710
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
390
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
POI: Proof of Identity
katsyoshi
0
140
Featured
See All Featured
ラッコキーワード サービス紹介資料
rakko
1
2.3M
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
67
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Optimizing for Happiness
mojombo
379
71k
How to build a perfect <img>
jonoalderson
1
4.9k
A designer walks into a library…
pauljervisheath
210
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
The SEO Collaboration Effect
kristinabergwall1
0
350
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
It's Worth the Effort
3n
188
29k
Transcript
Predic'ng Online Performance of News Recommender Systems Through Richer Evelua'on
Metrics (Recsys 2015) Andrii Maksai, Florent Garcin, Boi Fal'ngs Ar'ficaial Intelligence Lab, Switzerland Yoshifumi Seki Gunosyデータマイニング研究会 2015.12.09
概要 • ニュース推薦の構築に関する論文 • 多くの推薦評価指標について – 各指標内、指標間の相関について – 指標が実際の成果(CTR)に与える影響について • アルゴリズムのチューニングについて •
オフラインのデータからオンラインの結果をど のように予測するか
様々な推薦システムの指標 • Accuracy – RMSEとか, MAEとか, F値とか • Diversity –
多様性 • Novelty – ユーザに取って新しいアイテムをどれだけ提示できるか • Coverage – 商品をどれだけカバーできるか • Serendipity – 意外性
評価指標の相関 • 各カテゴリ内のさまざまな指標は相関してい た – すべてを満足させる必要はなく,ひとつ代表する ものを得ればよい • カテゴリ間では相関してない
記事リストの長さによる依存 • 記事リストの長さによって相関の度合いは変 わってくる
Metric trade-off
Predic'ng online from offline • Offline Accuracy – 推薦システムが存在しない状況で生成されたク リックログから予測されたクリック率 •
Online Accuracy – 推薦システムが稼働している状況でのクリック率
Feature Selec'on • Least Angle Regression • 各Featureが線形に作用してるという仮定 – L1正規化 •
これを用いて各Metricsがどの程度CTRに反映 させているかを測る y = T x + n X j=1 | xj |
Feature Selec'on
Regression model • MetricsからCTRを予測するモデルができた – 各Metrics間のTrade-offがわかる – Metricsがどのように寄与するかがわかる
Self adjust algorithm blend
Dataset[SwissInfo] • Swissinfo.ch – ニュースサイト • Offline data – 227k clicks, 28,525
stories, 118k users • Online data – 3つの推薦システムの動作時のログ • 直近200記事クリックを使って推薦 – 3週間 – 168k click
Dataset[Yahoo Front Page] • 15日間のYahooTopPageでのクリックデータ[Li +2011] • ページへの滞在が2値ベクトルとして記載, 20 アイテムが推薦されている
• 28M visit 653 items – 同じようなセッションを統合して5.7M click
Dataset[LePoint] • 3.5 days – 4.6M clicks and 3.3M users
Feature Selec'on
CTR Predic'on
Online Accuracy Predic'on
Algorithm Blending