Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介/Predicting Online Performance of News Reco...
Search
ysekky
December 22, 2015
Research
0
360
論文紹介/Predicting Online Performance of News Recommender Systems
ysekky
December 22, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.3k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.8k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
800
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.9k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.4k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
920
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
340
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9k
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
100
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
460
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.3k
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
350
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
450
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
Featured
See All Featured
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
31
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
860
First, design no harm
axbom
PRO
1
1.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
18
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
74
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
50k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Done Done
chrislema
186
16k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Transcript
Predic'ng Online Performance of News Recommender Systems Through Richer Evelua'on
Metrics (Recsys 2015) Andrii Maksai, Florent Garcin, Boi Fal'ngs Ar'ficaial Intelligence Lab, Switzerland Yoshifumi Seki Gunosyデータマイニング研究会 2015.12.09
概要 • ニュース推薦の構築に関する論文 • 多くの推薦評価指標について – 各指標内、指標間の相関について – 指標が実際の成果(CTR)に与える影響について • アルゴリズムのチューニングについて •
オフラインのデータからオンラインの結果をど のように予測するか
様々な推薦システムの指標 • Accuracy – RMSEとか, MAEとか, F値とか • Diversity –
多様性 • Novelty – ユーザに取って新しいアイテムをどれだけ提示できるか • Coverage – 商品をどれだけカバーできるか • Serendipity – 意外性
評価指標の相関 • 各カテゴリ内のさまざまな指標は相関してい た – すべてを満足させる必要はなく,ひとつ代表する ものを得ればよい • カテゴリ間では相関してない
記事リストの長さによる依存 • 記事リストの長さによって相関の度合いは変 わってくる
Metric trade-off
Predic'ng online from offline • Offline Accuracy – 推薦システムが存在しない状況で生成されたク リックログから予測されたクリック率 •
Online Accuracy – 推薦システムが稼働している状況でのクリック率
Feature Selec'on • Least Angle Regression • 各Featureが線形に作用してるという仮定 – L1正規化 •
これを用いて各Metricsがどの程度CTRに反映 させているかを測る y = T x + n X j=1 | xj |
Feature Selec'on
Regression model • MetricsからCTRを予測するモデルができた – 各Metrics間のTrade-offがわかる – Metricsがどのように寄与するかがわかる
Self adjust algorithm blend
Dataset[SwissInfo] • Swissinfo.ch – ニュースサイト • Offline data – 227k clicks, 28,525
stories, 118k users • Online data – 3つの推薦システムの動作時のログ • 直近200記事クリックを使って推薦 – 3週間 – 168k click
Dataset[Yahoo Front Page] • 15日間のYahooTopPageでのクリックデータ[Li +2011] • ページへの滞在が2値ベクトルとして記載, 20 アイテムが推薦されている
• 28M visit 653 items – 同じようなセッションを統合して5.7M click
Dataset[LePoint] • 3.5 days – 4.6M clicks and 3.3M users
Feature Selec'on
CTR Predic'on
Online Accuracy Predic'on
Algorithm Blending