Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介/Predicting Online Performance of News Reco...
Search
ysekky
December 22, 2015
Research
0
360
論文紹介/Predicting Online Performance of News Recommender Systems
ysekky
December 22, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.3k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.8k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
810
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
3k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.6k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
POI: Proof of Identity
katsyoshi
0
140
音声感情認識技術の進展と展望
nagase
0
470
2025-11-21-DA-10th-satellite
yegusa
0
110
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
160
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
500
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
140
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
660
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
220
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
390
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
900
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Automating Front-end Workflow
addyosmani
1371
200k
30 Presentation Tips
portentint
PRO
1
220
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
A Tale of Four Properties
chriscoyier
162
24k
Context Engineering - Making Every Token Count
addyosmani
9
670
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
65
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
650
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Transcript
Predic'ng Online Performance of News Recommender Systems Through Richer Evelua'on
Metrics (Recsys 2015) Andrii Maksai, Florent Garcin, Boi Fal'ngs Ar'ficaial Intelligence Lab, Switzerland Yoshifumi Seki Gunosyデータマイニング研究会 2015.12.09
概要 • ニュース推薦の構築に関する論文 • 多くの推薦評価指標について – 各指標内、指標間の相関について – 指標が実際の成果(CTR)に与える影響について • アルゴリズムのチューニングについて •
オフラインのデータからオンラインの結果をど のように予測するか
様々な推薦システムの指標 • Accuracy – RMSEとか, MAEとか, F値とか • Diversity –
多様性 • Novelty – ユーザに取って新しいアイテムをどれだけ提示できるか • Coverage – 商品をどれだけカバーできるか • Serendipity – 意外性
評価指標の相関 • 各カテゴリ内のさまざまな指標は相関してい た – すべてを満足させる必要はなく,ひとつ代表する ものを得ればよい • カテゴリ間では相関してない
記事リストの長さによる依存 • 記事リストの長さによって相関の度合いは変 わってくる
Metric trade-off
Predic'ng online from offline • Offline Accuracy – 推薦システムが存在しない状況で生成されたク リックログから予測されたクリック率 •
Online Accuracy – 推薦システムが稼働している状況でのクリック率
Feature Selec'on • Least Angle Regression • 各Featureが線形に作用してるという仮定 – L1正規化 •
これを用いて各Metricsがどの程度CTRに反映 させているかを測る y = T x + n X j=1 | xj |
Feature Selec'on
Regression model • MetricsからCTRを予測するモデルができた – 各Metrics間のTrade-offがわかる – Metricsがどのように寄与するかがわかる
Self adjust algorithm blend
Dataset[SwissInfo] • Swissinfo.ch – ニュースサイト • Offline data – 227k clicks, 28,525
stories, 118k users • Online data – 3つの推薦システムの動作時のログ • 直近200記事クリックを使って推薦 – 3週間 – 168k click
Dataset[Yahoo Front Page] • 15日間のYahooTopPageでのクリックデータ[Li +2011] • ページへの滞在が2値ベクトルとして記載, 20 アイテムが推薦されている
• 28M visit 653 items – 同じようなセッションを統合して5.7M click
Dataset[LePoint] • 3.5 days – 4.6M clicks and 3.3M users
Feature Selec'on
CTR Predic'on
Online Accuracy Predic'on
Algorithm Blending