Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介/Predicting Online Performance of News Reco...
Search
ysekky
December 22, 2015
Research
0
340
論文紹介/Predicting Online Performance of News Recommender Systems
ysekky
December 22, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.1k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
760
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Research
See All in Research
Ad-DS Paper Circle #1
ykaneko1992
0
5.5k
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
100
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
370
NLP2025参加報告会 LT資料
hargon24
1
310
数理最適化に基づく制御
mickey_kubo
5
660
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
950
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
540
SI-D案内資料_京都文教大学
ryojitakeuchi1116
0
1.6k
VAGeo: View-specific Attention for Cross-View Object Geo-Localization
satai
3
370
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
220
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
330
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
230
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Automating Front-end Workflow
addyosmani
1370
200k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Site-Speed That Sticks
csswizardry
10
650
Speed Design
sergeychernyshev
31
1k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
480
A better future with KSS
kneath
239
17k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Transcript
Predic'ng Online Performance of News Recommender Systems Through Richer Evelua'on
Metrics (Recsys 2015) Andrii Maksai, Florent Garcin, Boi Fal'ngs Ar'ficaial Intelligence Lab, Switzerland Yoshifumi Seki Gunosyデータマイニング研究会 2015.12.09
概要 • ニュース推薦の構築に関する論文 • 多くの推薦評価指標について – 各指標内、指標間の相関について – 指標が実際の成果(CTR)に与える影響について • アルゴリズムのチューニングについて •
オフラインのデータからオンラインの結果をど のように予測するか
様々な推薦システムの指標 • Accuracy – RMSEとか, MAEとか, F値とか • Diversity –
多様性 • Novelty – ユーザに取って新しいアイテムをどれだけ提示できるか • Coverage – 商品をどれだけカバーできるか • Serendipity – 意外性
評価指標の相関 • 各カテゴリ内のさまざまな指標は相関してい た – すべてを満足させる必要はなく,ひとつ代表する ものを得ればよい • カテゴリ間では相関してない
記事リストの長さによる依存 • 記事リストの長さによって相関の度合いは変 わってくる
Metric trade-off
Predic'ng online from offline • Offline Accuracy – 推薦システムが存在しない状況で生成されたク リックログから予測されたクリック率 •
Online Accuracy – 推薦システムが稼働している状況でのクリック率
Feature Selec'on • Least Angle Regression • 各Featureが線形に作用してるという仮定 – L1正規化 •
これを用いて各Metricsがどの程度CTRに反映 させているかを測る y = T x + n X j=1 | xj |
Feature Selec'on
Regression model • MetricsからCTRを予測するモデルができた – 各Metrics間のTrade-offがわかる – Metricsがどのように寄与するかがわかる
Self adjust algorithm blend
Dataset[SwissInfo] • Swissinfo.ch – ニュースサイト • Offline data – 227k clicks, 28,525
stories, 118k users • Online data – 3つの推薦システムの動作時のログ • 直近200記事クリックを使って推薦 – 3週間 – 168k click
Dataset[Yahoo Front Page] • 15日間のYahooTopPageでのクリックデータ[Li +2011] • ページへの滞在が2値ベクトルとして記載, 20 アイテムが推薦されている
• 28M visit 653 items – 同じようなセッションを統合して5.7M click
Dataset[LePoint] • 3.5 days – 4.6M clicks and 3.3M users
Feature Selec'on
CTR Predic'on
Online Accuracy Predic'on
Algorithm Blending