Upgrade to Pro — share decks privately, control downloads, hide ads and more …

乗算型更新式に基づくランク制約付き空間共分散モデルの推定

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Yuki Kubo Yuki Kubo
March 06, 2019

 乗算型更新式に基づくランク制約付き空間共分散モデルの推定

久保優騎, 高宗典玄, 北村大地.猿渡洋,
“乗算型更新式に基づくランク制約付き空間共分散モデルの推定,”
日本音響学会 2019年春季研究発表会講演論文集, 2-6-1, pp.245–248, Tokyo, March 2019.

Avatar for Yuki Kubo

Yuki Kubo

March 06, 2019
Tweet

More Decks by Yuki Kubo

Other Decks in Research

Transcript

  1. ɹ ຊݚڀͷର৅ͱ໨త 2 / 15 • എܠɿϒϥΠϯυԻݯ෼཭ ▶ ର৅ɿ͍͔ͭ͘ͷԻݯ͔ΒͷԻ͕౸དྷ ▶

    ໨తɿ؍ଌࠞ߹Ի͔ΒݸʑͷԻݯ΁෼཭ ▶ ੍໿ɿԻڹతɾۭؒతಛ௃͸ະ஌ • ຊݚڀͷϑΥʔΧε ▶ ର৅ɿ֦ࢄੑԻݯதʹ 1 ͭͷ఺Իݯ͕ଘࡏ ▶ ໨తɿλʔήοτ఺ԻݯԻ੠ͷ෼཭ɾநग़ ▶ ຊݚڀɿΑΓߴ଎ͳʢऩଋอূ෇ͷʣ ɹɹɹɹਪఆΞϧΰϦζϜ ⾼速
  2. ɹ ຊݚڀͷର৅ͱ໨త 2 / 15 • എܠɿϒϥΠϯυԻݯ෼཭ ▶ ର৅ɿ͍͔ͭ͘ͷԻݯ͔ΒͷԻ͕౸དྷ ▶

    ໨తɿ؍ଌࠞ߹Ի͔ΒݸʑͷԻݯ΁෼཭ ▶ ੍໿ɿԻڹతɾۭؒతಛ௃͸ະ஌ • ຊݚڀͷϑΥʔΧε ▶ ର৅ɿ֦ࢄੑԻݯதʹ 1 ͭͷ఺Իݯ͕ଘࡏ ▶ ໨తɿλʔήοτ఺ԻݯԻ੠ͷ෼཭ɾநग़ ▶ ຊݚڀɿΑΓߴ଎ͳʢऩଋอূ෇ͷʣ ɹɹɹɹਪఆΞϧΰϦζϜ ⾼速
  3. ɹ ϥϯΫ 1 ۭؒϞσϧʹجͮ͘ϒϥΠϯυԻݯ෼཭ 3 / 15 :周波数インデクス : 時間インデクス •

    प೾਺ྖҬʹ͓͚Δॠ࣌ࠞ߹Ծఆ ʢ⇔ ఺ԻݯԾఆɼϥϯΫ 1 ۭؒϞσϧʣ xij = Ai sij • ਪఆ৴߸ yij = Wi xij ͷ֤੒෼͕ಠཱʹͳΔΑ͏෼཭ߦྻ Wi Λਪఆ ▶ प೾਺ྖҬಠཱ੒෼෼ੳ (FDICA) [Smaragdis, 98], [Saruwatari+, 06] ▶ ಠཱϕΫτϧ෼ੳ (IVA) [Hiroe, 06], [Kim+, 06] ▶ ಠཱ௿ϥϯΫߦྻ෼ੳ (ILRMA) [Kitamura+, 16]
  4. Conventional Method ϥϯΫ੍໿෇͖ۭؒڞ෼ࢄϞσϧ [ٱอଞ, 18] 4 / 15 • ֦ࢄੑࡶԻ͸શํҐΑΓ౸དྷʢ఺ԻݯͰͳ͍ʣ

    • ILRMA ͳͲͷख๏Ͱ͸໨తԻͱಉ͡ํҐ͔Β ౸དྷ͢Δ֦ࢄੑࡶԻͷ෼཭͕ࠔ೉ ʢਪఆ໨తԻʹࡶԻ͕࢒ཹ͢Δʣ • M − 1 ݸͷਪఆࡶԻͷਫ਼౓͸ඇৗʹߴ͍ (M ͸ϚΠΫ਺ɾԻݯ਺) • Ի੠ͷํҐɾࡶԻͷϥϯΫ M − 1 ͷۭؒ૬ؔߦྻ͸ਖ਼֬ʹ෼͔Δ • ϥϯΫ੍໿෇͖ۭؒڞ෼ࢄϞσϧɿ ILRMA Λ༻͍ͯҰ෦ͷۭؒ৘ใΛਪఆͨ͠ޙɼ͚ܽͨϥϯΫ 1 ੒෼Λ ਪఆ͠ɼଟνϟωϧ Wiener ϑΟϧλΛ༻͍ͯ࢒ཹࡶԻΛ཈ѹ 空間的に分離困難
  5. Conventional Method ֬཰Ϟσϧͱύϥϝʔλਪఆ 5 / 15 • ؍ଌ৴߸ xij Λ໨తԻ

    hij ͱ֦ࢄੑԻݯ uij ͷ࿨ͰϞσϧԽ • ύϥϝʔλਪఆɿEM ΞϧΰϦζϜ E-step M-step
  6. Proposed Method ಈػɿਪఆΞϧΰϦζϜͷมߋʹΑΔߴ଎Խ 6 / 15 • Majorization-minimizationʢMMʣΞϧΰϦζϜ͕ ϑϧϥϯΫۭؒ૬ؔߦྻΛѻ͏ϞσϧͰ༻͍ΒΕ͍ͯΔ ▶

    EM ΞϧΰϦζϜ͸ MM ΞϧΰϦζϜͷҰछ ▶ ิॿؔ਺Λ EM Ͱ༻͍ΒΕͨ΋ͷ͔Βมߋ͢Δͱ৐ࢉܕߋ৽ଇ ͕ಘΒΕɼߴ଎Խ͕ݟࠐΊΔ [Sawada+, 13] • Majorization-equalizationʢMEʣΞϧΰϦζϜ͕ MM ΞϧΰϦζϜΑΓ଎͍ऩଋΛ΋ͨΒ͢܏޲ [F´ evotte, 11] ▶ ϑϧϥϯΫۭؒ૬ؔߦྻʹରͯ͠͸ద༻ྫ͕ͳ͍ • ϥϯΫ੍໿෇͖ۭؒڞ෼ࢄϞσϧʹ͓͍ͯɼMMɾME Ξϧΰ ϦζϜͷಋग़ʹΑΓߋ৽Λߴ଎Խ • ϑϧϥϯΫۭؒ૬ؔߦྻΛѻ͏ॳͷ ME ΞϧΰϦζϜಋग़
  7. Proposed Method Majorization-minimization (MM) ΞϧΰϦζϜ 7 / 15 • ิॿม਺

    Ω ͱิॿؔ਺ f+ ͸࣍Λຬͨ͢ • Θ ͱ Ω ͷަޓ࠷దԽΛ܁Γฦ͢ f(Θ) ≤ f+(Θ, Ω) (∀Θ,∀ Ω) f(Θ) = min Ω f+(Θ, Ω) (∀Θ) Ω(n+1) ← arg min Ω f+(Θ(n), Ω) Θ(n+1) ← arg min Θ f+(Θ, Ω(n+1))
  8. Proposed Method Majorization-minimization (MM) ΞϧΰϦζϜ 7 / 15 • ิॿม਺

    Ω ͱิॿؔ਺ f+ ͸࣍Λຬͨ͢ • Θ ͱ Ω ͷަޓ࠷దԽΛ܁Γฦ͢ f(Θ) ≤ f+(Θ, Ω) (∀Θ,∀ Ω) f(Θ) = min Ω f+(Θ, Ω) (∀Θ) Ω(n+1) ← arg min Ω f+(Θ(n), Ω) Θ(n+1) ← arg min Θ f+(Θ, Ω(n+1))
  9. Proposed Method Majorization-minimization (MM) ΞϧΰϦζϜ 7 / 15 • ิॿม਺

    Ω ͱิॿؔ਺ f+ ͸࣍Λຬͨ͢ • Θ ͱ Ω ͷަޓ࠷దԽΛ܁Γฦ͢ f(Θ) ≤ f+(Θ, Ω) (∀Θ,∀ Ω) f(Θ) = min Ω f+(Θ, Ω) (∀Θ) Ω(n+1) ← arg min Ω f+(Θ(n), Ω) Θ(n+1) ← arg min Θ f+(Θ, Ω(n+1))
  10. Proposed Method Majorization-minimization (MM) ΞϧΰϦζϜ 7 / 15 • ิॿม਺

    Ω ͱิॿؔ਺ f+ ͸࣍Λຬͨ͢ • Θ ͱ Ω ͷަޓ࠷దԽΛ܁Γฦ͢ f(Θ) ≤ f+(Θ, Ω) (∀Θ,∀ Ω) f(Θ) = min Ω f+(Θ, Ω) (∀Θ) Ω(n+1) ← arg min Ω f+(Θ(n), Ω) Θ(n+1) ← arg min Θ f+(Θ, Ω(n+1))
  11. Proposed Method Majorization-minimization (MM) ΞϧΰϦζϜ 7 / 15 • ิॿม਺

    Ω ͱิॿؔ਺ f+ ͸࣍Λຬͨ͢ • Θ ͱ Ω ͷަޓ࠷దԽΛ܁Γฦ͢ f(Θ) ≤ f+(Θ, Ω) (∀Θ,∀ Ω) f(Θ) = min Ω f+(Θ, Ω) (∀Θ) Ω(n+1) ← arg min Ω f+(Θ(n), Ω) Θ(n+1) ← arg min Θ f+(Θ, Ω(n+1))
  12. Proposed Method Majorization-minimization (MM) ΞϧΰϦζϜ 7 / 15 • ิॿม਺

    Ω ͱิॿؔ਺ f+ ͸࣍Λຬͨ͢ • Θ ͱ Ω ͷަޓ࠷దԽΛ܁Γฦ͢ f(Θ) ≤ f+(Θ, Ω) (∀Θ,∀ Ω) f(Θ) = min Ω f+(Θ, Ω) (∀Θ) Ω(n+1) ← arg min Ω f+(Θ(n), Ω) Θ(n+1) ← arg min Θ f+(Θ, Ω(n+1))
  13. Proposed Method Majorization-equalization (ME) ΞϧΰϦζϜ 7 / 15 • ิॿม਺

    Ω ͱิॿؔ਺ f+ ͸࣍Λຬͨ͢ • Θ ͱ Ω ͷަޓ࠷దԽΛ܁Γฦ͢ • ME ΞϧΰϦζϜ͸ MM ΞϧΰϦζϜʹ ൺ΂ͯߴ଎Ͱ͋Δ܏޲ [F´ evotte, 11] • ϑϧϥϯΫۭؒ૬ؔߦྻΛѻ͏ Ϟσϧʹରͯ͠͸ద༻ྫແ͠ → ଟมྔͷ৔߹ಋग़͕ࠔ೉ͳͨΊ f(Θ) ≤ f+(Θ, Ω) (∀Θ,∀ Ω) f(Θ) = min Ω f+(Θ, Ω) (∀Θ) Ω(n+1) ← arg min Ω f+(Θ(n), Ω) Θ(n+1) ← ˆ Θ s.t. f+(ˆ Θ, Ω(n+1)) = f+(Θ, Ω(n+1))
  14. Proposed Method ϥϯΫ੍໿෇͖ۭؒڞ෼ࢄϞσϧʹ͓͚Δิॿؔ਺ͷઃܭ 8 / 15 • ۭؒ૬ؔߦྻͱ֤࣌ؒप೾਺ϑϨʔϜͰͷίετؔ਺ R(x) ij

    = r(h) ij a(h) i (a(h) i )H + r(u) ij R(u) i , R(u) i = R′(u) i + λibibH i f(r(h) ij , r(u) ij , λi) = xH ij (R(x) ij )−1xij + log det R(x) ij + (α + 1) log r(h) ij + β r(h) ij ิॿؔ਺ͷઃܭ͸༰қ
  15. Proposed Method ϥϯΫ੍໿෇͖ۭؒڞ෼ࢄϞσϧʹ͓͚Δิॿؔ਺ͷઃܭ 8 / 15 • ۭؒ૬ؔߦྻͱ֤࣌ؒप೾਺ϑϨʔϜͰͷίετؔ਺ R(x) ij

    = r(h) ij a(h) i (a(h) i )H + r(u) ij R(u) i , R(u) i = R′(u) i + λibibH i f(r(h) ij , r(u) ij , λi) = xH ij (R(x) ij )−1xij + log det R(x) ij + (α + 1) log r(h) ij + β r(h) ij tr(Ψ−1 ij (R(x) ij − Ψij )) + log det Ψij (α + 1)(log ˜ r(h) ij − 1) + (α + 1) r(h) ij ˜ r(h) ij + β r(h) ij ≤ ≤
  16. Proposed Method Ұൠతͳߦྻʹର͢Δtr߲ͷෆ౳ࣜ 9 / 15 Λ ∈ CM×M :

    ൒ਖ਼ఆ஋Τϧϛʔτ ɹ Rn:ਖ਼ఆ஋Τϧϛʔτɼ ∑ n Φn = I tr(( ∑ n Rn)−1Λ) ≤ ∑ n tr(ΦH n R−1 n ΦnΛ) xH ij (R(x) ij )−1xij = tr((R(x) ij )−1xijxH ij ) R(x) ij = r(h) ij a(h) i (a(h) i )H + r(u) ij R(u) i ଟνϟωϧ NMFʢMNMFʣʹ͓͚Δෆ౳ࣜ [Sawada+, 13]
  17. Proposed Method Ұൠతͳߦྻʹର͢Δtr߲ͷෆ౳ࣜ 9 / 15 Λ ∈ CM×M :

    ൒ਖ਼ఆ஋Τϧϛʔτ ɹ Rn:ਖ਼ఆ஋Τϧϛʔτɼ ∑ n Φn = I tr(( ∑ n Rn)−1Λ) ≤ ∑ n tr(ΦH n R−1 n ΦnΛ) ɹ Rn ɿ൒ਖ਼ఆ஋Τϧϛʔτɼ ∑ n Rn ɿਖ਼ଇɼ ∑ n Φn = PɼP ɿ ImΛ ΁ͷࣹӨߦྻɼKerΦn = KerΛɼImΦn = ImRn tr(( ∑ n Rn)−1Λ) ≤ ∑ n tr(ΦH n R+ n ΦnΛ) Rn ͷϥϯΫʹؔ͢ΔҰൠԽ ଟνϟωϧ NMFʢMNMFʣʹ͓͚Δෆ౳ࣜ [Sawada+, 13]
  18. Proposed Method ಘΒΕΔิॿؔ਺ͱิॿม਺ͷߋ৽ࣜ 10 / 15 • ߋ৽લͷύϥϝʔλΛ ˜ r(h)

    ij ͳͲͱ͢Δ f ≤ f+ := |ξH ij xij|2 + β r(h) ij + r(h) ij ( (a(h) i )HΨ−1 ij a(h) i + α + 1 ˜ r(h) ij ) + 1 r(u) ij xH ij ΦH ij (R(u) i )−1Ψijxij + r(u) ij tr(Ψ−1 ij R(u) i ) + const. (ͨͩ͠R(u) i = R′(u) i + λibibH i ) • ౳߸੒ཱ৚݅Λݩʹิॿม਺Λߋ৽ Ψij = ˜ R(x) ij ξij = ˜ r(h) ij ( ˜ R(x) ij )−1a(h) i Φij = ˜ r(u) ij ˜ R(u) i ( ˜ R(x) ij )−1
  19. Proposed Method ໨తม਺ͷ৐ࢉܕߋ৽ࣜ 11 / 15 • MM ΞϧΰϦζϜ ิॿม਺ߋ৽ޙɼิॿؔ਺Λ

    r(h) ij , r(u) ij , λi ʹؔͯ͠࠷খԽ r(h) ij = ˜ r(h) ij |(a(h) i )H(R(x) ij )−1xij |2 + β (˜ r(h) ij )2 (a(h) i )H(R(x) ij )−1a(h) i + α+1 ˜ r(h) ij r(u) ij = ˜ r(u) ij xH ij (R(x) ij )−1R(u) i (R(x) ij )−1xij tr((R(x) ij )−1R(u) i ) λi = ˜ λi ∑ j r(u) ij |bH i (R(x) ij )−1xij |2 ∑ j r(u) ij bH i (R(x) ij )−1bi
  20. Proposed Method ໨తม਺ͷ৐ࢉܕߋ৽ࣜ 12 / 15 • ME ΞϧΰϦζϜ ิॿม਺ߋ৽ޙɼิॿؔ਺ͷ஋Λม͑ͳ͍

    r(h) ij , r(u) ij , λi Ͱߋ৽ r(h) ij = ˜ r(h) ij |(a(h) i )H(R(x) ij )−1xij |2 + β (˜ r(h) ij )2 (a(h) i )H(R(x) ij )−1a(h) i + α+1 ˜ r(h) ij r(u) ij = ˜ r(u) ij xH ij (R(x) ij )−1R(u) i (R(x) ij )−1xij tr((R(x) ij )−1R(u) i ) λi = ˜ λi ∑ j r(u) ij |bH i (R(x) ij )−1xij |2 ∑ j r(u) ij bH i (R(x) ij )−1bi
  21. Proposed Method ໨తม਺ͷ৐ࢉܕߋ৽ࣜ 12 / 15 • ME ΞϧΰϦζϜ ิॿม਺ߋ৽ޙɼิॿؔ਺ͷ஋Λม͑ͳ͍

    r(h) ij , r(u) ij , λi Ͱߋ৽ r(h) ij = ˜ r(h) ij |(a(h) i )H(R(x) ij )−1xij |2 + β (˜ r(h) ij )2 (a(h) i )H(R(x) ij )−1a(h) i + α+1 ˜ r(h) ij r(u) ij = ˜ r(u) ij xH ij (R(x) ij )−1R(u) i (R(x) ij )−1xij tr((R(x) ij )−1R(u) i ) λi = ˜ λi ∑ j r(u) ij |bH i (R(x) ij )−1xij |2 ∑ j r(u) ij bH i (R(x) ij )−1bi • MNMF ͳͲͷϑϧϥϯΫۭؒ૬ؔߦྻʹର͢Δ ME ΞϧΰϦ ζϜ͸ະใࠂˠۭؒύϥϝʔλΛ 1 ࣗ༝౓ʹམͱ͠Մೳʹ
  22. Experiments ࣮ݧ৚݅ 13 / 15 ໨తԻ੠৴߸ JNAS ΫϦʔϯԻݯσʔλϕʔεͷԻݯ (16 kHz)

    ࡶԻ৴߸ ަ௨ࡶԻ (DEMAND) ΠϯύϧεԠ౴ ࢒ڹ 200 ms ؀ڥԼͰऩ࿥ Ի੠ͱࡶԻͷ SNR 0 dB ૭௕ (FFT ௕) 1024 ఺ (64 ms ૬౰) γϑτ௕ 512 ఺ ILRMA ͷ൓෮ճ਺ 50 ධՁࢦඪ source-to-distortion ratio (SDR) վળྔ 6.45 cm 10° 1.5 m 1.0 m Target speech Noise sources Impulse response T60 = 200 ms
  23. Experiments ࣮ݧ݁Ռ 14 / 15 0 10 20 30 Number

    of iterations −2 −1 0 1 2 Log-likelihood ×106 0 10 20 30 Number of iterations 7.9 8.2 8.5 8.8 9.1 9.4 9.7 10.0 SDR improvement [dB] EM MM ME EM MM ME • ಛʹ ME ͕ɼ଎͍໬౓ͷऩଋɾߴ͍ SDR վળΛࣔͨ͠
  24. ·ͱΊ 15 / 15 • ʦ໨తʧ ํ޲ੑ໨తԻݯͱ֦ࢄੑԻݯͷ෼཭ • ʦखஈʧ ϥϯΫ੍໿෇͖ۭؒڞ෼ࢄϞσϧਪఆ๏

    • ʦैདྷ๏ʧEM ΞϧΰϦζϜͰύϥϝʔλਪఆ • ʦಈػʧ MNMFɿิॿؔ਺๏ʹجͮ͘৐ࢉܕߋ৽ଇ͕༗ޮ • ʦ੒Ռ 1ʧϥϯΫ੍໿Λߟྀͨ͠ෆ౳ࣜΛಋग़ • ʦ੒Ռ 2ʧMMɾME ΞϧΰϦζϜʹجͮ͘৐ࢉܕߋ৽ଇΛಋग़ ▶ ϑϧϥϯΫۭؒ૬ؔߦྻΛѻ͏ϞσϧͰ͸ ME ͸ॳͷద༻ • ʦ࣮ݧʧ EM ΞϧΰϦζϜʹର͢Δ༏ҐੑΛ֬ೝ
  25. Appendix ILRMAɼMNMFͱैདྷ๏ʢEMΞϧΰϦζϜʣ 17 / 15 0 100 200 Number of

    iterations 0 2 4 6 8 10 SDR improvement [dB] Babble noise ILRMA Original MNMF ILRMA+MNMF EM • ࡢ೥Իڹֶձʹ͓͍ͯ ILRMA, MNMF<EM (in SDR) Λ֬ೝ • ຊൃදͰ͸ EM<(MM,) ME Λ ֬ೝ
  26. Appendix ଟมྔͷMEΞϧΰϦζϜಋग़ͷࠔ೉ੑ 18 / 15 • ଟมྔͷϞσϧͰ͸ɼۭؒ૬ؔߦྻ R ∈ CM×M

    ʹରͯ͠ิॿ ؔ਺͸ f+(R) = tr(AR−1) + tr(BR) + const. ͱॻ͘͜ͱ͕Ͱ͖Δ • ͜ΕΛ࠷খԽ͢Δ఺ʢMM ΞϧΰϦζϜʣͷٻղ͸୅਺ Riccati ํఔࣜʹؼண [Sawada+,13] • ҰํͰ f+ Λม͑ͳ͍఺ʢME ΞϧΰϦζϜʣ͸ແ਺ʹଘࡏ͠ɼ ͔ͭͦͷΑ͏ͳ఺ͷू߹ΛٻΊΔ͜ͱ΋ࠔ೉
  27. Appendix MEɾMMΞϧΰϦζϜಋग़ͷํ๏ 19 / 15 • ิॿؔ਺͸͍ͣΕͷ໨తม਺ x ʹରͯ͠΋ f+(x)

    = ax + b x + c ͷܗʹมܗͰ͖Δ • ࠷খԽˠඍ෼ͯ͠ 0 ͱ͓͘ • ஋Λม͑ͳ͍఺ˠೋ࣍ํఔࣜΛղ͘