Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
190
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
150
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
200
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
140
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
120
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
240
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
300
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
200
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
200
Other Decks in Research
See All in Research
한국어 오픈소스 거대 언어 모델의 가능성: 새로운 시대의 언어 이해와 생성
inureyes
PRO
0
220
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
1k
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
satai
3
120
Composed image retrieval for remote sensing
satai
3
240
Evaluating Tool-Augmented Agents in Remote Sensing Platforms
satai
3
150
Weekly AI Agents News! 11月号 論文のアーカイブ
masatoto
0
300
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.5k
The many faces of AI and the role of mathematics
gpeyre
1
1.7k
地理空間情報と自然言語処理:「地球の歩き方旅行記データセット」の高付加価値化を通じて
hiroki13
1
190
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
320
CoRL2024サーベイ
rpc
1
1.6k
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
24
5.9k
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
The Invisible Side of Design
smashingmag
299
50k
We Have a Design System, Now What?
morganepeng
51
7.4k
Embracing the Ebb and Flow
colly
84
4.6k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
How to Ace a Technical Interview
jacobian
276
23k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21