Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
180
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
130
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
180
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
120
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
130
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
100
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
220
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
280
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
190
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
180
Other Decks in Research
See All in Research
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
150
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
190
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
520
Tiaccoon: コンテナネットワークにおいて複数トランスポート方式で統一的なアクセス制御
hiroyaonoe
0
130
CUNY DHI_Lightning Talks_2024
digitalfellow
0
130
ミニ四駆AI用制御装置の事例紹介
aks3g
0
180
湯村研究室の紹介2024 / yumulab2024
yumulab
0
350
アプリケーションから知るモデルマージ
maguro27
0
170
The Fellowship of Trust in AI
tomzimmermann
0
150
ダイナミックプライシング とその実例
skmr2348
3
480
Composed image retrieval for remote sensing
satai
2
130
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
300
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Cult of Friendly URLs
andyhume
78
6.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
4 Signs Your Business is Dying
shpigford
181
21k
A designer walks into a library…
pauljervisheath
204
24k
How STYLIGHT went responsive
nonsquared
95
5.2k
Designing for humans not robots
tammielis
250
25k
Docker and Python
trallard
42
3.1k
Agile that works and the tools we love
rasmusluckow
328
21k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21