Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
Yumeto Inaoka
May 26, 2019
Research
1
100
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
70
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
95
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
74
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
77
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
50
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
150
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
180
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
120
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
130
Other Decks in Research
See All in Research
再現性問題 再入門
arumakan
0
130
第20回チャンピオンズミーティング・サジタリウス杯ラウンド2集計 / Umamusume Sagittarius 2022 Round2
kitachan_black
0
700
Dangerous ‘Deep Decarbonization’ (Krebs PowerPoint to Cooler Heads Coalition)
gkehr1
0
740
【IR Reading2022秋】 CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems
yamato0811
1
110
【マケデコ】JPX Kaggleコンペ5位解法共有
ghtaro
1
180
データ分析の進め方とニュースメディアでのデータ活用事例 / data-analysis-in-kaggle-and-news-media
upura
0
480
RecSys2022 論文読み会 | 【紹介】Tutorial: Psychology-informed Recommender Systems
zerebom
0
440
論文紹介:On the Importance of Gradients for Detecting Distributional Shifts in the Wild
mkimura
2
250
フィッシング対策セミナー2022講演資料 / antiphishing-seminar2022-hasegawa
ayakohasegawa
0
1k
【論文紹介】Evaluating the Evaluation of Diversity in Natural Language Generation
ichiroex
2
190
Teslaはカメラを使ってどのように世界を認識しているか
inoichan
5
7.5k
サービスメッシュを用いたマイクロサービス型分散システムの運用管理/servicemesh in hitachi
ido_kara_deru
1
130
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
226
130k
Practical Orchestrator
shlominoach
178
8.9k
Stop Working from a Prison Cell
hatefulcrawdad
263
18k
Faster Mobile Websites
deanohume
295
29k
Building a Modern Day E-commerce SEO Strategy
aleyda
6
4.5k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
351
21k
Building Your Own Lightsaber
phodgson
96
4.9k
Web Components: a chance to create the future
zenorocha
304
40k
WebSockets: Embracing the real-time Web
robhawkes
58
6k
Web development in the modern age
philhawksworth
197
9.6k
Code Review Best Practice
trishagee
50
11k
From Idea to $5000 a Month in 5 Months
shpigford
374
44k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21