Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
210
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
150
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
160
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
140
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
330
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
220
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
260
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
240
Scale-Aware Recognition in Satellite images Under Resource Constraints
satai
3
330
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
520
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
12
3.8k
Mathematics in the Age of AI and the 4 Generation University
hachama
0
160
Self-supervised audiovisual representation learning for remote sensing data
satai
3
210
SI-D案内資料_京都文教大学
ryojitakeuchi1116
0
1.6k
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
930
Combinatorial Search with Generators
kei18
0
280
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
400
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
640
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
How to train your dragon (web standard)
notwaldorf
92
6.1k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Stop Working from a Prison Cell
hatefulcrawdad
270
20k
Designing Experiences People Love
moore
142
24k
Building an army of robots
kneath
306
45k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
KATA
mclloyd
29
14k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
16
940
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21