Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
220
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
150
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
340
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
810
20250624_熊本経済同友会6月例会講演
trafficbrain
1
510
Submeter-level land cover mapping of Japan
satai
3
160
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
380
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
350
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.5k
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
240
近似動的計画入門
mickey_kubo
4
1k
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
17k
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
340
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
220
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
1.2k
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.5k
Balancing Empowerment & Direction
lara
1
510
Typedesign – Prime Four
hannesfritz
42
2.7k
How to Ace a Technical Interview
jacobian
278
23k
Optimizing for Happiness
mojombo
379
70k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21