Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
湯村研究室の紹介2025 / yumulab2025
yumulab
0
270
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
470
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
120
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
380
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
370
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
360
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
230
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
220
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
400
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
250
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Evolving SEO for Evolving Search Engines
ryanjones
0
73
It's Worth the Effort
3n
187
29k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
73
Mobile First: as difficult as doing things right
swwweet
225
10k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21