Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
190
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
150
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
190
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
140
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
120
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
230
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
300
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
200
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
200
Other Decks in Research
See All in Research
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
410
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
410
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
330
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
760
ソフトウェア研究における脅威モデリング
laysakura
0
1.6k
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
300
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.8k
研究を支える拡張性の高い ワークフローツールの提案 / Proposal of highly expandable workflow tools to support research
linyows
0
300
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
4.9k
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
460
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
320
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
380
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
Fireside Chat
paigeccino
34
3.2k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Designing for Performance
lara
604
68k
Gamification - CAS2011
davidbonilla
80
5.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
Java REST API Framework Comparison - PWX 2021
mraible
28
8.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The Cult of Friendly URLs
andyhume
78
6.2k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Side Projects
sachag
452
42k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21