Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
220
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
290
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
220
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
140
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
400
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
260
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
390
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
480
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
460
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
45
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.2k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
860
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
31
BBQ
matthewcrist
89
9.9k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
58
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21