Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
180
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
130
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
170
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
120
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
120
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
93
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
210
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
270
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
180
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
180
Other Decks in Research
See All in Research
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
140
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
350
ダイナミックプライシング とその実例
skmr2348
3
400
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
55
19k
論文紹介/Expectations over Unspoken Alternatives Predict Pragmatic Inferences
chemical_tree
1
260
Physics of Language Models: Part 3.1, Knowledge Storage and Extraction
sosk
1
950
いしかわ暮らしセミナー~移住にまつわるお金の話~
matyuda
0
150
クロスセクター効果研究会 熊本都市交通リノベーション~「車1割削減、渋滞半減、公共交通2倍」の実現へ~
trafficbrain
0
250
最近のVisual Odometryと Depth Estimation
sgk
1
270
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
130
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
640
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
250
Featured
See All Featured
Unsuck your backbone
ammeep
668
57k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
The World Runs on Bad Software
bkeepers
PRO
65
11k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Thoughts on Productivity
jonyablonski
67
4.3k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21