Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
240
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
710
snlp2025_prevent_llm_spikes
takase
0
400
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
160
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.1k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
790
財務諸表監査のための逐次検定
masakat0
0
200
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
12
6.8k
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.9k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
660
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
1.4k
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Typedesign – Prime Four
hannesfritz
42
2.9k
Embracing the Ebb and Flow
colly
88
4.9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Bash Introduction
62gerente
615
210k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Scaling GitHub
holman
464
140k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21