Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
210
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
150
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
160
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
140
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
330
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
220
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
170
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
240
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
5
2.5k
最適化と機械学習による問題解決
mickey_kubo
0
140
RapidPen: AIエージェントによるペネトレーションテスト 初期侵入全自動化の研究
laysakura
0
1.4k
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
900
電力システム最適化入門
mickey_kubo
1
630
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
810
線形判別分析のPU学習による朝日歌壇短歌の分析
masakat0
0
130
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
14k
「エージェントって何?」から「実際の開発現場で役立つ考え方やベストプラクティス」まで
mickey_kubo
0
120
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
810
Featured
See All Featured
Bash Introduction
62gerente
614
210k
GitHub's CSS Performance
jonrohan
1031
460k
Adopting Sorbet at Scale
ufuk
77
9.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Raft: Consensus for Rubyists
vanstee
140
7k
Typedesign – Prime Four
hannesfritz
42
2.7k
Designing for Performance
lara
609
69k
Building Applications with DynamoDB
mza
95
6.5k
A better future with KSS
kneath
239
17k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21