Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
220
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
150
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
340
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
540
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
870
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
210
投資戦略202508
pw
0
170
NLP2025参加報告会 LT資料
hargon24
1
350
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.8k
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
3
150
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
150
Submeter-level land cover mapping of Japan
satai
3
200
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
satai
3
260
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
7
1.1k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Designing for Performance
lara
610
69k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
What's in a price? How to price your products and services
michaelherold
246
12k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
810
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Unsuck your backbone
ammeep
671
58k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Typedesign – Prime Four
hannesfritz
42
2.8k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21