Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
220
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
350
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
280
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
150
CVPR2025論文紹介:Unboxed
murakawatakuya
0
180
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
9.2k
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
1
360
Generative Models 2025
takahashihiroshi
25
14k
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
380
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
120
Nullspace MPC
mizuhoaoki
1
220
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
340
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
230
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
1.1k
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Being A Developer After 40
akosma
91
590k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Embracing the Ebb and Flow
colly
88
4.9k
A designer walks into a library…
pauljervisheath
209
24k
How STYLIGHT went responsive
nonsquared
100
5.8k
Docker and Python
trallard
46
3.6k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21