Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
180
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
880
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
330
能動適応的実験計画
masakat0
2
1.1k
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
220
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
990
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
120
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
150
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
For a Future-Friendly Web
brad_frost
180
10k
GraphQLとの向き合い方2022年版
quramy
50
14k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
The Invisible Side of Design
smashingmag
302
51k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Side Projects
sachag
455
43k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Navigating Team Friction
lara
191
16k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21