$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
360
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
140
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
0
260
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
200
説明可能な機械学習と数理最適化
kelicht
2
760
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
100
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.3k
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
460
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
220
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
Featured
See All Featured
First, design no harm
axbom
PRO
1
1.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
37
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
69
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Building AI with AI
inesmontani
PRO
1
570
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
170
Navigating Team Friction
lara
191
16k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
How STYLIGHT went responsive
nonsquared
100
6k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
290
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21