Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Query and Output: Generating Words by Que...
Search
Yumeto Inaoka
July 20, 2018
Research
1
200
文献紹介: Query and Output: Generating Words by Querying Distributed Word Representations for Paraphrase Generation
2018/07/20の文献紹介で発表
Yumeto Inaoka
July 20, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
350
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
8.7k
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
180
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
360
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
130
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
320
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
260
Combinatorial Search with Generators
kei18
0
970
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
230
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
390
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
110
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
62
31k
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
190
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
870
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
4 Signs Your Business is Dying
shpigford
185
22k
Speed Design
sergeychernyshev
32
1.2k
Embracing the Ebb and Flow
colly
88
4.8k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
Being A Developer After 40
akosma
91
590k
A Tale of Four Properties
chriscoyier
161
23k
Done Done
chrislema
185
16k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Transcript
Query and Output: Generating Words by Querying Distributed Word Representations
for Paraphrase Generation Shuming Ma, Xu Sun, Wei Li, Sujian Li, Wenjie Li, Xuancheng Ren. Proceedings of NAACL-HLT 2018, pages 196-206, 2018. จݙհ Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ҴԬເਓ
"CTUSBDU wطଘͷ4FRTFRϞσϧ͕ੜ͢Δจ จ๏తʹਖ਼͍͕͠ҙຯతʹෆదͳ͜ͱ͕Α͋͘Δ w୯ޠࢄදݱͷݕࡧʹΑͬͯ୯ޠΛੜ͢Δ 8PSE&NCFEEJOH"UUFOUJPO/FUXPSL 8&"/ ΛఏҊ wݴ͍͕͑ॏཁͳςΩετฏқԽͱจཁλεΫͰ TUBUFPGUIFBSUΛୡ
!2
*OUSPEVDUJPO w ैདྷͷ4FRTFRϞσϧ୯ޠͷҙຯͰͳ͘܇࿅ ηοτͷ୯ޠύλʔϯΛ҉ه͢Δ͕͋Δ ˡσίʔμͷग़ྗ͕ҙຯతใΛϞσϦϯά ɹ͍ͯ͠ͳ͍ͨΊ w σίʔμͷग़ྗ͕࣋ͭύϥϝʔλ͕ଟ͍ ӅΕͷ࣍ݩ͕ ޠኮαΠζ͕ສͷ߹
ύϥϝʔλ ສͱͳΔ !3
8&"/ w 8PSE&NCFEEJOH"UUFOUJPO/FUXPSL w 3//ͷग़ྗΛΫΤϦͱͯ͠࠷Ұக͢Δࢄදݱ ͷ୯ޠΛBUUFOUJPOΛ༻ͨ͠ݕࡧʹΑͬͯબ w ୯ޠͷࢄදݱΤϯίʔμɺσίʔμͷೖྗ ʹՃ͑ͯग़ྗͷΫΤϦʹΑͬͯߋ৽͞ΕΔ !4
!5 8&"/
!6 8&"/
!7 8&"/
!8 8&"/
ΫΤϦͱ୯ޠͷηοτ͔ΒείΞΛܭࢉ RUλΠϜεςοϓUͷRVFSZ FJJ൪ͷީิ୯ޠ J ʜ O OޠኮαΠζ είΞ͕࠷େͱͳΔ୯ޠΛબ WBMJEBUJPOTFUTͰͷੑೳΛجʹHFOFSBMΛ༻
!9
5SBJOJOH w ୯ޠͷબʹݕࡧΛ༻͍͍ͯΔ͕ɺҰൠతͳ 4FRTFRͱಉ༷ʹඍՄೳ ˠଛࣦؔಉ͡ͷ͕༻Մೳ w "EBN Ћ Ќ Ќ
ЏF !10
&YQFSJNFOUT 5FYU4JNQMJpDBUJPO w %BUBTFUT 1BSBMMFM8JLJQFEJB4JNQMJpDBUJPO$PSQVT 18,1 USBJOWBMJEUFTU
&OHMJTI8JLJQFEJBBOE4JNQMF&OHMJTI8JLJQFEJB &84&8 L USBJOWBMJEUFTU UFTUTFU".5ͰಘΒΕͨͭͷ3FGFSFODFΛ࣋ͭ !11
&YQFSJNFOUT 5FYU4JNQMJpDBUJPO w &WBMVBUJPO.FUSJDT #-&6 ػց༁ฏқԽͰ͘༻͍ΒΕ͍ͯΔࣗಈධՁख๏ ਓखධՁ ྲྀெੑɺଥੑɺฏқ͞ΛͰධՁ ฏқ͞ग़ྗ͕ೖྗͱൺͯͲΕ͚ͩฏқ͔Λࣔ͢
!12
݁Ռ ࣗಈධՁ !13
݁Ռ ਓखධՁ !14
"OBMZTJT w 8&"/ैདྷͷ4FRTFRͱൺͯύϥϝʔλ͕গͳ͍ !15
"OBMZTJT w /54XW1#.53ඞਢͷཁૉΛ͍͍ܽͯΔ w 4#.54"3*ྲྀெ͕ͩҙຯ͕ҟͳΔ !16
"OBMZTJT !17
"OBMZTJT !18 ˢলུ͕ଟ͘ใ͕ෆ͍ͯ͠Δ
"OBMZTJT !19 ˢTJFNFOTNBSUJO SSC TIVSCBͱ͍ͬͨແؔͷ ɹ୯ޠΛग़ྗ
"OBMZTJT !20 ˣྲྀெ͕ͩҙຯ͕ҟͳΓΑΓཧղ͕͘͠ͳ͍ͬͯΔ
$PODMVTJPO w ΫΤϦʹΑΔ୯ޠࢄදݱͷݕࡧ͔Β୯ޠΛੜ ͢ΔFODPEFSEFDPEFSGSBNFXPSLΛఏҊ w ͭͷӳޠฏқԽσʔληοτʹ͓͍ͯ ϕʔεϥΠϯͱൺֱͯ͠#-&6͕ͦΕͧΕ ͓Αͼ্ͨ͠ w ຊϞσϧTUBUFPGUIFBSUΛୡ͍ͯ͠Δ
!21