Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Query and Output: Generating Words by Que...
Search
Yumeto Inaoka
July 20, 2018
Research
1
170
文献紹介: Query and Output: Generating Words by Querying Distributed Word Representations for Paraphrase Generation
2018/07/20の文献紹介で発表
Yumeto Inaoka
July 20, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
140
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
180
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
130
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
110
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
230
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
290
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
190
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
190
Other Decks in Research
See All in Research
打率7割を実現する、プロダクトディスカバリーの7つの極意(pmconf2024)
geshi0820
0
160
大規模言語モデルのバイアス
yukinobaba
PRO
4
800
Composed image retrieval for remote sensing
satai
2
140
アプリケーションから知るモデルマージ
maguro27
0
220
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
270
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
4.7k
Weekly AI Agents News!
masatoto
29
43k
機械学習による言語パフォーマンスの評価
langstat
6
850
機械学習でヒトの行動を変える
hiromu1996
1
430
ソフトウェア研究における脅威モデリング
laysakura
0
1.2k
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.2k
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
330
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
53
13k
A Philosophy of Restraint
colly
203
16k
GitHub's CSS Performance
jonrohan
1030
460k
Fireside Chat
paigeccino
34
3.1k
The World Runs on Bad Software
bkeepers
PRO
66
11k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
A designer walks into a library…
pauljervisheath
205
24k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
940
Git: the NoSQL Database
bkeepers
PRO
427
64k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
550
Transcript
Query and Output: Generating Words by Querying Distributed Word Representations
for Paraphrase Generation Shuming Ma, Xu Sun, Wei Li, Sujian Li, Wenjie Li, Xuancheng Ren. Proceedings of NAACL-HLT 2018, pages 196-206, 2018. จݙհ Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ҴԬເਓ
"CTUSBDU wطଘͷ4FRTFRϞσϧ͕ੜ͢Δจ จ๏తʹਖ਼͍͕͠ҙຯతʹෆదͳ͜ͱ͕Α͋͘Δ w୯ޠࢄදݱͷݕࡧʹΑͬͯ୯ޠΛੜ͢Δ 8PSE&NCFEEJOH"UUFOUJPO/FUXPSL 8&"/ ΛఏҊ wݴ͍͕͑ॏཁͳςΩετฏқԽͱจཁλεΫͰ TUBUFPGUIFBSUΛୡ
!2
*OUSPEVDUJPO w ैདྷͷ4FRTFRϞσϧ୯ޠͷҙຯͰͳ͘܇࿅ ηοτͷ୯ޠύλʔϯΛ҉ه͢Δ͕͋Δ ˡσίʔμͷग़ྗ͕ҙຯతใΛϞσϦϯά ɹ͍ͯ͠ͳ͍ͨΊ w σίʔμͷग़ྗ͕࣋ͭύϥϝʔλ͕ଟ͍ ӅΕͷ࣍ݩ͕ ޠኮαΠζ͕ສͷ߹
ύϥϝʔλ ສͱͳΔ !3
8&"/ w 8PSE&NCFEEJOH"UUFOUJPO/FUXPSL w 3//ͷग़ྗΛΫΤϦͱͯ͠࠷Ұக͢Δࢄදݱ ͷ୯ޠΛBUUFOUJPOΛ༻ͨ͠ݕࡧʹΑͬͯબ w ୯ޠͷࢄදݱΤϯίʔμɺσίʔμͷೖྗ ʹՃ͑ͯग़ྗͷΫΤϦʹΑͬͯߋ৽͞ΕΔ !4
!5 8&"/
!6 8&"/
!7 8&"/
!8 8&"/
ΫΤϦͱ୯ޠͷηοτ͔ΒείΞΛܭࢉ RUλΠϜεςοϓUͷRVFSZ FJJ൪ͷީิ୯ޠ J ʜ O OޠኮαΠζ είΞ͕࠷େͱͳΔ୯ޠΛબ WBMJEBUJPOTFUTͰͷੑೳΛجʹHFOFSBMΛ༻
!9
5SBJOJOH w ୯ޠͷબʹݕࡧΛ༻͍͍ͯΔ͕ɺҰൠతͳ 4FRTFRͱಉ༷ʹඍՄೳ ˠଛࣦؔಉ͡ͷ͕༻Մೳ w "EBN Ћ Ќ Ќ
ЏF !10
&YQFSJNFOUT 5FYU4JNQMJpDBUJPO w %BUBTFUT 1BSBMMFM8JLJQFEJB4JNQMJpDBUJPO$PSQVT 18,1 USBJOWBMJEUFTU
&OHMJTI8JLJQFEJBBOE4JNQMF&OHMJTI8JLJQFEJB &84&8 L USBJOWBMJEUFTU UFTUTFU".5ͰಘΒΕͨͭͷ3FGFSFODFΛ࣋ͭ !11
&YQFSJNFOUT 5FYU4JNQMJpDBUJPO w &WBMVBUJPO.FUSJDT #-&6 ػց༁ฏқԽͰ͘༻͍ΒΕ͍ͯΔࣗಈධՁख๏ ਓखධՁ ྲྀெੑɺଥੑɺฏқ͞ΛͰධՁ ฏқ͞ग़ྗ͕ೖྗͱൺͯͲΕ͚ͩฏқ͔Λࣔ͢
!12
݁Ռ ࣗಈධՁ !13
݁Ռ ਓखධՁ !14
"OBMZTJT w 8&"/ैདྷͷ4FRTFRͱൺͯύϥϝʔλ͕গͳ͍ !15
"OBMZTJT w /54XW1#.53ඞਢͷཁૉΛ͍͍ܽͯΔ w 4#.54"3*ྲྀெ͕ͩҙຯ͕ҟͳΔ !16
"OBMZTJT !17
"OBMZTJT !18 ˢলུ͕ଟ͘ใ͕ෆ͍ͯ͠Δ
"OBMZTJT !19 ˢTJFNFOTNBSUJO SSC TIVSCBͱ͍ͬͨແؔͷ ɹ୯ޠΛग़ྗ
"OBMZTJT !20 ˣྲྀெ͕ͩҙຯ͕ҟͳΓΑΓཧղ͕͘͠ͳ͍ͬͯΔ
$PODMVTJPO w ΫΤϦʹΑΔ୯ޠࢄදݱͷݕࡧ͔Β୯ޠΛੜ ͢ΔFODPEFSEFDPEFSGSBNFXPSLΛఏҊ w ͭͷӳޠฏқԽσʔληοτʹ͓͍ͯ ϕʔεϥΠϯͱൺֱͯ͠#-&6͕ͦΕͧΕ ͓Αͼ্ͨ͠ w ຊϞσϧTUBUFPGUIFBSUΛୡ͍ͯ͠Δ
!21