Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Query and Output: Generating Words by Que...
Search
Yumeto Inaoka
July 20, 2018
Research
1
200
文献紹介: Query and Output: Generating Words by Querying Distributed Word Representations for Paraphrase Generation
2018/07/20の文献紹介で発表
Yumeto Inaoka
July 20, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
350
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
650
ウェブ・ソーシャルメディア論文読み会 第31回: The rising entropy of English in the attention economy. (Commun Psychology, 2024)
hkefka385
1
110
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
670
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4k
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
570
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
770
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
32k
Combinatorial Search with Generators
kei18
0
1k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
540
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
380
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
750
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
3
1.3k
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
Product Roadmaps are Hard
iamctodd
PRO
55
11k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
A Tale of Four Properties
chriscoyier
161
23k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Site-Speed That Sticks
csswizardry
13
920
Statistics for Hackers
jakevdp
799
220k
Scaling GitHub
holman
463
140k
How to Think Like a Performance Engineer
csswizardry
27
2.1k
Transcript
Query and Output: Generating Words by Querying Distributed Word Representations
for Paraphrase Generation Shuming Ma, Xu Sun, Wei Li, Sujian Li, Wenjie Li, Xuancheng Ren. Proceedings of NAACL-HLT 2018, pages 196-206, 2018. จݙհ Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ҴԬເਓ
"CTUSBDU wطଘͷ4FRTFRϞσϧ͕ੜ͢Δจ จ๏తʹਖ਼͍͕͠ҙຯతʹෆదͳ͜ͱ͕Α͋͘Δ w୯ޠࢄදݱͷݕࡧʹΑͬͯ୯ޠΛੜ͢Δ 8PSE&NCFEEJOH"UUFOUJPO/FUXPSL 8&"/ ΛఏҊ wݴ͍͕͑ॏཁͳςΩετฏқԽͱจཁλεΫͰ TUBUFPGUIFBSUΛୡ
!2
*OUSPEVDUJPO w ैདྷͷ4FRTFRϞσϧ୯ޠͷҙຯͰͳ͘܇࿅ ηοτͷ୯ޠύλʔϯΛ҉ه͢Δ͕͋Δ ˡσίʔμͷग़ྗ͕ҙຯతใΛϞσϦϯά ɹ͍ͯ͠ͳ͍ͨΊ w σίʔμͷग़ྗ͕࣋ͭύϥϝʔλ͕ଟ͍ ӅΕͷ࣍ݩ͕ ޠኮαΠζ͕ສͷ߹
ύϥϝʔλ ສͱͳΔ !3
8&"/ w 8PSE&NCFEEJOH"UUFOUJPO/FUXPSL w 3//ͷग़ྗΛΫΤϦͱͯ͠࠷Ұக͢Δࢄදݱ ͷ୯ޠΛBUUFOUJPOΛ༻ͨ͠ݕࡧʹΑͬͯબ w ୯ޠͷࢄදݱΤϯίʔμɺσίʔμͷೖྗ ʹՃ͑ͯग़ྗͷΫΤϦʹΑͬͯߋ৽͞ΕΔ !4
!5 8&"/
!6 8&"/
!7 8&"/
!8 8&"/
ΫΤϦͱ୯ޠͷηοτ͔ΒείΞΛܭࢉ RUλΠϜεςοϓUͷRVFSZ FJJ൪ͷީิ୯ޠ J ʜ O OޠኮαΠζ είΞ͕࠷େͱͳΔ୯ޠΛબ WBMJEBUJPOTFUTͰͷੑೳΛجʹHFOFSBMΛ༻
!9
5SBJOJOH w ୯ޠͷબʹݕࡧΛ༻͍͍ͯΔ͕ɺҰൠతͳ 4FRTFRͱಉ༷ʹඍՄೳ ˠଛࣦؔಉ͡ͷ͕༻Մೳ w "EBN Ћ Ќ Ќ
ЏF !10
&YQFSJNFOUT 5FYU4JNQMJpDBUJPO w %BUBTFUT 1BSBMMFM8JLJQFEJB4JNQMJpDBUJPO$PSQVT 18,1 USBJOWBMJEUFTU
&OHMJTI8JLJQFEJBBOE4JNQMF&OHMJTI8JLJQFEJB &84&8 L USBJOWBMJEUFTU UFTUTFU".5ͰಘΒΕͨͭͷ3FGFSFODFΛ࣋ͭ !11
&YQFSJNFOUT 5FYU4JNQMJpDBUJPO w &WBMVBUJPO.FUSJDT #-&6 ػց༁ฏқԽͰ͘༻͍ΒΕ͍ͯΔࣗಈධՁख๏ ਓखධՁ ྲྀெੑɺଥੑɺฏқ͞ΛͰධՁ ฏқ͞ग़ྗ͕ೖྗͱൺͯͲΕ͚ͩฏқ͔Λࣔ͢
!12
݁Ռ ࣗಈධՁ !13
݁Ռ ਓखධՁ !14
"OBMZTJT w 8&"/ैདྷͷ4FRTFRͱൺͯύϥϝʔλ͕গͳ͍ !15
"OBMZTJT w /54XW1#.53ඞਢͷཁૉΛ͍͍ܽͯΔ w 4#.54"3*ྲྀெ͕ͩҙຯ͕ҟͳΔ !16
"OBMZTJT !17
"OBMZTJT !18 ˢলུ͕ଟ͘ใ͕ෆ͍ͯ͠Δ
"OBMZTJT !19 ˢTJFNFOTNBSUJO SSC TIVSCBͱ͍ͬͨແؔͷ ɹ୯ޠΛग़ྗ
"OBMZTJT !20 ˣྲྀெ͕ͩҙຯ͕ҟͳΓΑΓཧղ͕͘͠ͳ͍ͬͯΔ
$PODMVTJPO w ΫΤϦʹΑΔ୯ޠࢄදݱͷݕࡧ͔Β୯ޠΛੜ ͢ΔFODPEFSEFDPEFSGSBNFXPSLΛఏҊ w ͭͷӳޠฏқԽσʔληοτʹ͓͍ͯ ϕʔεϥΠϯͱൺֱͯ͠#-&6͕ͦΕͧΕ ͓Αͼ্ͨ͠ w ຊϞσϧTUBUFPGUIFBSUΛୡ͍ͯ͠Δ
!21