Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Modeling Naive Psychology of Characters in Simp...
Search
Yuto Kamiwaki
January 29, 2019
Research
1
220
Modeling Naive Psychology of Characters in Simple Commonsense Stories
2019/01/30 文献紹介の発表内容
Yuto Kamiwaki
January 29, 2019
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
140
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
83
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
170
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
財務諸表監査のための逐次検定
masakat0
0
220
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.4k
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
420
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
410
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
270
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
460
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
100
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
240
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
100
Featured
See All Featured
Un-Boring Meetings
codingconduct
0
170
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
The Curious Case for Waylosing
cassininazir
0
200
Believing is Seeing
oripsolob
0
16
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
200
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
RailsConf 2023
tenderlove
30
1.3k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Google's AI Overviews - The New Search
badams
0
870
Transcript
Modeling Naive Psychology of Characters in Simple Commonsense Stories Nagaoka
University of Technology Yuto Kamiwaki Literature Review
Literature • Modeling Naive Psychology of Characters in Simple Commonsense
Stories • Hannah Rashkin , Antoine Bosselut , Maarten Sap , Kevin Knight and Yejin Choi • Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers) 2
Abstract • 機械が物語を理解するのは,容易ではない. ◦ 行間を読む,人の精神状態 • 動機と感情的反応に関して登場人物の精神状態を特定し, 物語中の心理変化を説明する新しいアノテーションフレーム ワークを提案. 3
Introduction • 物語の中の出来事と登場人物の精神状態との間の因果関 係についての推論が必要.(たとえ,それらの関係が明確に 述べられていなくても) • Mostafazadeh et al.,2017で示されているように,本推論は 統計学とニューラルマシンにとって非常に困難(人間にとって
は些細なこと) 4
Introduction • 登場人物の精神状態に関して,短編小説を密にラベル付け するための新しいアノテーション形式を構築した Mostafazadeh et al.,2016→(この文献はコーパス構築につ いての内容) ◦ 文献url
: http://www.aclweb.org/anthology/N16-1098 5
6
• 登場人物の精神状態のオープンテキストの説明も取得. ◦ 登場人物の精神状態を説明することができる計算モデル を学習することが可能に 7
8
9
10
11
12
Model • TF-IDF • GloVe • CNN • LSTM •
REN • NPN 13
14
15 • タスクが難しいのに全てのモデルは,ランダムよりもスコアが高い. • エンティティ固有のコンテキスト情報を追加したことによりパフォーマンスが向上. • 各タスクで最もパフォーマンスの高いモデルは, Maslowの生理学的ニーズ, Reiss の食欲,Plutchikの喜びの反応を予測するのに最も効果的.
• 食物に関連する動機(および一般に生理学的ニーズ)を予測することの相対的な容 易さは,それらが摂食または調理などのより限定された具体的な一連の行動を含む ためである.
16
17 • 単純なモデルがオープンテキスト応答をカテゴリにマッピングすることを学習できて いる. • 自由回答アノテーションの分類モデルを事前学習することが,カテゴリ予測のパ フォーマンス向上に役立つ可能性があるという私たちの仮説を支持している.
18 • 説明は感情や動機の状態に密接に関係しているので,ランダムなベースラインをか なり競争力のあるものにすることができる. • すべてのモデルが両方のメトリックで強力なベースラインよりも優れており,生成され た簡単な説明は意味的にリファレンスのアノテーションに近いことを示している.
Conclusion • 短い物語における登場人物の精神状態の情報で訓練し,評 価するためのリソースとして大規模データセットを構築した. • データセットには、登場人物の動機と感情的な反応に対する 30万以上の低レベルの注釈が含まれている. • 重要なのは、登場人物固有のコンテキストをモデリングし,フ リーレスポンスデータを事前トレーニングすることでラベリン
グパフォーマンスが向上することである. 19